Matching Items (4)
Filtering by

Clear all filters

156674-Thumbnail Image.png
Description
Working memory capacity and fluid intelligence are important predictors of performance in educational settings. Thus, understanding the processes underlying the relation between working memory capacity and fluid intelligence is important. Three large scale individual differences experiments were conducted to determine the mechanisms underlying the relation between working memory capacity and

Working memory capacity and fluid intelligence are important predictors of performance in educational settings. Thus, understanding the processes underlying the relation between working memory capacity and fluid intelligence is important. Three large scale individual differences experiments were conducted to determine the mechanisms underlying the relation between working memory capacity and fluid intelligence. Experiments 1 and 2 were designed to assess whether individual differences in strategic behavior contribute to the variance shared between working memory capacity and fluid intelligence. In Experiment 3, competing theories for describing the underlying processes (cognitive vs. strategy) were evaluated in a comprehensive examination of potential underlying mechanisms. These data help inform existing theories about the mechanisms underlying the relation between WMC and gF. However, these data also indicate that the current theoretical model of the shared variance between WMC and gF would need to be revised to account for the data in Experiment 3. Possible sources of misfit are considered in the discussion along with a consideration of the theoretical implications of observing those relations in the Experiment 3 data.
ContributorsWingert, Kimberly Marie (Author) / Brewer, Gene A. (Thesis advisor) / McNamara, Danielle (Thesis advisor) / McClure, Samuel (Committee member) / Redick, Thomas (Committee member) / Arizona State University (Publisher)
Created2018
161856-Thumbnail Image.png
Description
Humans are biased toward teleological explanations of natural phenomena. The promiscuous teleology account posits that this proclivity is rooted in the detection of supernatural agency behind the design of the natural world. This idea is supported by numerous positive correlations of religious belief and agreement with teleological explanations of natural

Humans are biased toward teleological explanations of natural phenomena. The promiscuous teleology account posits that this proclivity is rooted in the detection of supernatural agency behind the design of the natural world. This idea is supported by numerous positive correlations of religious belief and agreement with teleological explanations of natural phenomena, but it is challenged by findings that non-believers often agree with them as well, suggesting the need for an adjudicating experiment. The current experiment tested whether considering similar teleological explanations of nature causes explicitly theistic and atheistic people to think about God, which would suggest that the teleological bias has roots in agency detection. Participants (N = 608) were randomly assigned to consider teleological explanations of either human-caused phenomena or natural phenomena, with the main prediction that considering the natural item set would make theists relatively faster to categorize God as real but make atheists relatively slower to categorize God as imaginary. The data did support this hypothesis, suggesting that people across the theistic belief spectrum automatically think of God when thinking about nature’s purpose, and thus the teleological bias might be rooted in the detection of supernatural agency. Implications for theories of teleology, study limitations, and potential future directions are discussed.
ContributorsScott, Matthew (Author) / Cohen, Adam B (Thesis advisor) / Kenrick, Douglas T (Committee member) / Brewer, Gene A (Committee member) / Becker, David Vaughn (Committee member) / Arizona State University (Publisher)
Created2021
161857-Thumbnail Image.png
Description
Capacity limits of the human nervous system require important or rewarding information to be prioritized and encoded over less important or rewarding information. The present dissertation aims to identify structural and functional neural correlates of reward-motivated memory encoding. Chapter 1 reviews studies of reward-motivated memory encoding and their neural correlates,

Capacity limits of the human nervous system require important or rewarding information to be prioritized and encoded over less important or rewarding information. The present dissertation aims to identify structural and functional neural correlates of reward-motivated memory encoding. Chapter 1 reviews studies of reward-motivated memory encoding and their neural correlates, as well as the structure and function of dopaminergic midbrain circuits. Chapter 2 presents a study that utilizes electroencephalography (EEG) to determine which of two hypothesized processes underly the influence of reward value on episodic memory. One hypothesis is that value engages prefrontal executive control processes, so that valuable stimuli engage an elaborative rehearsal strategy that benefits memory. A second hypothesis is that value acts through the reward-related midbrain dopamine system to modulate synaptic plasticity in hippocampal and cortical efferents, thereby benefiting memory encoding. The results revealed that EEG signals thought to index dopamine-driven attention allocation were modulated by reward value and were positively correlated with individual differences in behavioral measures of memory prioritization. Chapter 3 employs diffusion-weighted magnetic resonance imaging (MRI) to dissociate heterogenous functional circuits of the midbrain reward system. The results comport with primate histology and show that midbrain circuits are differentially predictive of impulsivity and of attention-deficit hyperactivity disorder (ADHD). Chapter 4 presents a study that also employs diffusion-weighted MRI. The findings replicate Chapter 3 in dissociating heterogenous functional circuits of the midbrain reward system. Additionally, the structural integrity of midbrain-hippocampus circuits was quantified. Structural integrity of these circuits was positively correlated to behavioral measures of memory prioritization. These findings suggest that structural and functional measures of the dopaminergic reward system may underlie reward-motivated memory encoding in humans.
ContributorsElliott, Blake Louis (Author) / Brewer, Gene A (Thesis advisor) / McClure, Samuel M (Committee member) / Sanabria, Federico (Committee member) / Bae, Gi-Yeul (Committee member) / Arizona State University (Publisher)
Created2021
161380-Thumbnail Image.png
Description
Individuals encounter problems daily wherein varying numbers of constraints require delimitation of memory to target goal-satisfying information. Multiply-constrained problems, such as compound remote associates, are commonly used to study this type of problem solving. Since their development, multiply-constrained problems have been theoretically and empirically related to creative thinking, analytical problem

Individuals encounter problems daily wherein varying numbers of constraints require delimitation of memory to target goal-satisfying information. Multiply-constrained problems, such as compound remote associates, are commonly used to study this type of problem solving. Since their development, multiply-constrained problems have been theoretically and empirically related to creative thinking, analytical problem solving, insight problem solving, intelligence, and a multitude of other cognitive abilities. Critically, in order to correctly solve a multiply-constrained problem the solver must have the solution available in memory and be able to target and access to that information. Experiment 1 determined that the cue – target relationship affects the likelihood that a problem is solved. Moreover, Experiment 2 identified that the association between cues and targets predicted inter- & intra-individual differences in multiply-constrained problem solving. Lastly, Experiment 3 found monetary incentives failed to improve problem solving performance likely due to knowledge serving as a limiting factor on performance. Additionally, problem solvers were shown to be able to reliably assess the likelihood they would solve a problem. Taken together all three studies demonstrated the importance of knowledge & knowledge structures on problem solving performance.
ContributorsEllis, Derek (Author) / Brewer, Gene A (Thesis advisor) / Homa, Donald (Committee member) / Blais, Chris (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2021