Matching Items (7)
Filtering by

Clear all filters

153814-Thumbnail Image.png
Description
The current work investigated the emergence of leader-follower roles during social motor coordination. Previous research has presumed a leader during coordination assumes a spatiotemporally advanced position (e.g., relative phase lead). While intuitive, this definition discounts what role-taking implies. Leading and following is defined as one person (or limb) having a

The current work investigated the emergence of leader-follower roles during social motor coordination. Previous research has presumed a leader during coordination assumes a spatiotemporally advanced position (e.g., relative phase lead). While intuitive, this definition discounts what role-taking implies. Leading and following is defined as one person (or limb) having a larger influence on the motor state changes of another; the coupling is asymmetric. Three experiments demonstrated asymmetric coupling effects emerge when task or biomechanical asymmetries are imputed between actors. Participants coordinated in-phase (Ф =0o) swinging of handheld pendulums, which differed in their uncoupled eigenfrequencies (frequency detuning). Coupling effects were recovered through phase-amplitude modeling. Experiment 1 examined leader-follower coupling during a bidirectional task. Experiment 2 employed an additional coupling asymmetry by assigning an explicit leader and follower. Both experiment 1 and 2 demonstrated asymmetric coupling effects with increased detuning. In experiment 2, though, the explicit follower exhibited a phase lead in nearly all conditions. These results confirm that coupling direction was not determined strictly by relative phasing. A third experiment examined the question raised by the previous two, which is how could someone follow from ahead (i.e., phase lead in experiment 2). This was tested using a combination of frequency detuning and amplitude asymmetry requirements (e.g., 1:1 or 1:2 & 2:1). Results demonstrated larger amplitude movements drove the coupling towards the person with the smaller amplitude; small amplitude movements exhibited a phase lead, despite being a follower in coupling terms. These results suggest leader-follower coupling is a general property of social motor coordination. Predicting when such coupling effects occur is emphasized by the stability reducing effects of coordinating asymmetric components. Generally, the implication is role-taking is an emergent strategy of dividing up coordination stabilizing efforts unequally between actors (or limbs).
ContributorsFine, Justin (Author) / Amazeen, Eric L. (Thesis advisor) / Amazeen, Polemnia G. (Committee member) / Brewer, Gene (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2015
156607-Thumbnail Image.png
Description
Properly deciding to engage in or to withhold an action is a critical ability for goal-oriented movement control. Such decision may be driven by expected value from the choice of action but associating physical effort may discount such value. A novel anticipatory stopping task was developed to investigate effort discounted

Properly deciding to engage in or to withhold an action is a critical ability for goal-oriented movement control. Such decision may be driven by expected value from the choice of action but associating physical effort may discount such value. A novel anticipatory stopping task was developed to investigate effort discounted decision process potentially present in proactive inhibitory control. Subjects performed or abstained from target reach if they believed it was a Go or Stop trial respectively. Reward was awarded to a reach, correctly timed to hit a target at the same time as the moving bar in Go trials. During the Stop trials, correctly judging to not engage in a reach from the color of the moving bar that linked to the bar’s probability of stopping before the target resulted in gaining a reward. Resistive force field incurred additional physical effort for choosing to reach. Introducing effort expectedly decreased the tendency to respond at trials with higher stop probability. Surprisingly, tendency to respond increased and corresponding reaction time decreased in the trials with lower stop probability. Such asymmetric effect suggests that the value of context ineffective response is discounted, and the value of context effective response is flexibly enhanced by its associated effort cost to drive decision-process in goal-oriented manner. Medial frontal event related potential (ERP) locked to the onset of moving bar appearance reflected such effort discounted decision process. Theta band observed in Stop trials accounted for evaluation of effort and context possibly reinforcing such decision-making.
ContributorsTsuchiya, Toshiki (Author) / Santello, Marco (Thesis advisor) / Fine, Justin (Committee member) / McClure, Samuel (Committee member) / Arizona State University (Publisher)
Created2018
133601-Thumbnail Image.png
Description
Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we

Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we can use to further evaluate these motions is known as Startle Evoked Movements (SEM). SEM is an established technique to probe the motor learning and planning processes by detecting muscle activation of the sternocleidomastoid muscles of the neck prior to 120ms after a startling stimulus is presented. If activation of these muscles was detected following a stimulus in the 120ms window, the movement is classified as Startle+ whereas if no sternocleidomastoid activation is detected after a stimulus in the allotted time the movement is considered Startle-. For a movement to be considered SEM, the activation of movements for Startle+ trials must be faster than the activation of Startle- trials. The objective of this study was to evaluate the effect that expertise has on sequential movements as well as determining if startle can distinguish when the consolidation of actions, known as chunking, has occurred. We hypothesized that SEM could distinguish words that were solidified or chunked. Specifically, SEM would be present when expert typists were asked to type a common word but not during uncommon letter combinations. The results from this study indicated that the only word that was susceptible to SEM, where Startle+ trials were initiated faster than Startle-, was an uncommon task "HET" while the common words "AND" and "THE" were not. Additionally, the evaluation of the differences between each keystroke for common and uncommon words showed that Startle was unable to distinguish differences in motor chunking between Startle+ and Startle- trials. Explanations into why these results were observed could be related to hand dominance in expert typists. No proper research has been conducted to evaluate the susceptibility of the non-dominant hand's fingers to SEM, and the results of future studies into this as well as the results from this study can impact our understanding of sequential movements.
ContributorsMieth, Justin Richard (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134938-Thumbnail Image.png
Description
Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements

Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements of the hand (grasp) but not individuated movements of the finger (finger abduction) were susceptible. It was suggested that this resulted from different neural mechanisms involved in each task; however it is possible this was the result of task familiarity. The objective of this study was to evaluate a more familiar individuated finger movement, typing, to determine if this task was susceptible to SEM. We hypothesized that typing movements will be susceptible to SEM in all fingers. These results indicate that individuated movements of the fingers are susceptible to SEM when the task involves a more familiar task, since the electromyogram (EMG) latency is faster in SCM+ trials compared to SCM- trials. However, the middle finger does not show a difference in terms of the keystroke voltage signal, suggesting the middle finger is less susceptible to SEM. Given that SEM is thought to be mediated by the brainstem, specifically the reticulospinal tract, this suggest that the brainstem may play a role in movements of the distal limb when those movements are very familiar, and the independence of each finger might also have a significant on the effect of SEM. Further research includes understanding SEM in fingers in the stroke population. The implications of this research can impact the way upper extremity rehabilitation is delivered.
ContributorsQuezada Valladares, Maria Jose (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134804-Thumbnail Image.png
Description
Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.
ContributorsOssanna, Meilin Ryan (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
187370-Thumbnail Image.png
Description
This project investigates the gleam-glum effect, a well-replicated phonetic emotion association in which words with the [i] vowel-sound (as in “gleam”) are judged more emotionally positive than words with the [Ʌ] vowel-sound (as in “glum”). The effect is observed across different modalities and languages and is moderated by mouth movements

This project investigates the gleam-glum effect, a well-replicated phonetic emotion association in which words with the [i] vowel-sound (as in “gleam”) are judged more emotionally positive than words with the [Ʌ] vowel-sound (as in “glum”). The effect is observed across different modalities and languages and is moderated by mouth movements relevant to word production. This research presents and tests an articulatory explanation for this association in three experiments. Experiment 1 supported the articulatory explanation by comparing recordings of 71 participants completing an emotional recall task and a word read-aloud task, showing that oral movements were more similar between positive emotional expressions and [i] articulation, and negative emotional expressions and [Ʌ] articulation. Experiment 2 partially supported the explanation with 98 YouTube recordings of natural speech. In Experiment 3, 149 participants judged emotions expressed by a speaker during [i] and [Ʌ] articulation. Contradicting the robust phonetic emotion association, participants judged more frequently that the speaker’s [Ʌ] articulatory movements were positive emotional expressions and [i] articulatory movements were negative emotional expressions. This is likely due to other visual emotional cues not related to oral movements and the order of word lists read by the speaker. Findings from the current project overall support an articulatory explanation for the gleam-glum effect, which has major implications for language and communication.
ContributorsYu, Shin-Phing (Author) / Mcbeath, Michael K (Thesis advisor) / Glenberg, Arthur M (Committee member) / Stone, Greg O (Committee member) / Coza, Aurel (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2023
158637-Thumbnail Image.png
Description
The ability to inhibit a planned but inappropriate response, and switch to executing a goal-relevant motor response, is critically important for the regulation of motor behaviors. Inhibition and switching could be mediated by various control mechanisms. Proactive control uses contextual information (cues) to plan the response for the target stimulus

The ability to inhibit a planned but inappropriate response, and switch to executing a goal-relevant motor response, is critically important for the regulation of motor behaviors. Inhibition and switching could be mediated by various control mechanisms. Proactive control uses contextual information (cues) to plan the response for the target stimulus (probe) based on the expectation of a response inhibition or switching stimulus combination. Previous work has reported the involvement of several brain areas associated with proactive inhibition and switching, e.g., dorsolateral prefrontal cortex, anterior cingulate cortex, inferior frontal junction, and pre-supplementary motor area. However, how these areas interact and their functional role in different types of cognitive control is still debated. An AX-version of the continuous performance task (AX-CPT) was used to examine proactive inhibition and switching of motor actions. In a typical AX-CPT trial, a contextual cue stimulus is presented, followed by a probe stimulus after a specific inter-stimulus interval. As part of a trial sequence, if a target cue and target probe are presented, a target response is to be provided when the probe is observed. Otherwise, a non-target response is to be provided for all other stimuli. A behavioral switching AX-CPT experiment (48 subjects) was conducted to explore the parameters that induce a proactive shift in the motor response. Participants who performed the AX-CPT task with relatively shorter interstimulus interval predominantly and consistently exhibited proactive control behavior. A follow-up pilot study (3 subjects) of response inhibition versus response switching AX-CPT was performed using 256-channel high-density electroencephalography (HD-EEG). HD-EEG was used to identify the time course of cortical activation in brain areas associated with response inhibition. It was observed that one out of three participants used a proactive strategy for response switching based on probe response error and probe response reaction time. Instantaneous amplitude spatial maps obtained from HD-EEG revealed cortical activity corresponding to conflict between proactively-prepared incorrect responses and reactively-corrected goal-relevant responses after the probe was presented.
ContributorsMysore, Archana Shashidhar (Author) / Santello, Marco (Thesis advisor) / Blais, Christopher (Committee member) / Brewer, Gene (Committee member) / Tillery, Stephen Helms (Committee member) / Arizona State University (Publisher)
Created2020