Matching Items (12)

Filtering by

Clear all filters

137168-Thumbnail Image.png

Feelin' Good...And Then Some: A Functional Evolutionary Approach to Positive Emotions in Sport

Description

Sport is a widespread phenomenon across human cultures and history. Unfortunately, positive emotions in sport have been long vaguely characterized as happy or pleasant, or ignored altogether. Recent emotion research has taken a differentiated approach, however, suggesting there are distinct

Sport is a widespread phenomenon across human cultures and history. Unfortunately, positive emotions in sport have been long vaguely characterized as happy or pleasant, or ignored altogether. Recent emotion research has taken a differentiated approach, however, suggesting there are distinct positive emotions with diverse implications for behavior. The present study applied this evolutionarily informed approach in the context of sport to examine which positive emotions are associated with play. It was hypothesized that pride, amusement, and enthusiasm, but not contentment or awe, would increase in Ultimate Frisbee players during a practice scrimmage. Further, it was hypothesized that increases in pride and amusement during practice would be differentially associated with sport outcomes, including performance (scores, assists, and defenses), subjective social connectedness, attributions of success, and attitudes toward the importance of practice. It was found that all positive emotions decreased during practice. It was also found that increases in pride were associated with more scores and greater social connectedness, whereas increases in amusement were associated with more assists. The present study was one of the first to examine change in positive emotions during play and to relate them to specific performance outcomes. Future studies should expand to determine which came first: emotion or performance.

Contributors

Agent

Created

Date Created
2014-05

150150-Thumbnail Image.png

Isomorphic categories

Description

Learning and transfer were investigated for a categorical structure in which relevant stimulus information could be mapped without loss from one modality to another. The category space was composed of three non-overlapping, linearly-separable categories. Each stimulus was composed of a

Learning and transfer were investigated for a categorical structure in which relevant stimulus information could be mapped without loss from one modality to another. The category space was composed of three non-overlapping, linearly-separable categories. Each stimulus was composed of a sequence of on-off events that varied in duration and number of sub-events (complexity). Categories were learned visually, haptically, or auditorily, and transferred to the same or an alternate modality. The transfer set contained old, new, and prototype stimuli, and subjects made both classification and recognition judgments. The results showed an early learning advantage in the visual modality, with transfer performance varying among the conditions in both classification and recognition. In general, classification accuracy was highest for the category prototype, with false recognition of the category prototype higher in the cross-modality conditions. The results are discussed in terms of current theories in modality transfer, and shed preliminary light on categorical transfer of temporal stimuli.

Contributors

Agent

Created

Date Created
2011

149644-Thumbnail Image.png

The development of robust intuitive decision making in simulated real-world environments

Description

Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which

Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which a foundation for intuitive decision making is developed. Accordingly, the present study investigated several factors that affect implicit learning and the development of intuitive decision making in a simulated real-world environment: (1) simple versus complex situational patterns; (2) the diversity of the patterns to which an individual is exposed; (3) the underlying mechanisms. The results showed that simple patterns led to higher levels of implicit learning and intuitive decision-making accuracy than complex patterns; increased diversity enhanced implicit learning and intuitive decision-making accuracy; and an embodied mechanism, labeling, contributes to the development of intuitive decision making in a simulated real-world environment. The results suggest that simulated real-world environments can provide the basis for training intuitive decision making, that diversity is influential in the process of training intuitive decision making, and that labeling contributes to the development of intuitive decision making. These results are interpreted in the context of applied situations such as military applications involving remotely piloted aircraft.

Contributors

Agent

Created

Date Created
2011

150044-Thumbnail Image.png

The effect of partial exemplar experience on ill-defined, multi-modal categories

Description

The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept

The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays in category definition was explained. It was hypothesized that the effects of partial experience are not explained by a shifting of attention between dimensions (Taylor & Ross, 2009) but rather by an increased reliance on prototypical values used to fill in missing information during incomplete experiences. Results indicated that participants (1) do not fill in missing information with prototypical values, (2) integrate information less efficiently between different modalities than within a single modality, and (3) have difficulty learning only when partial experience prevents access to diagnostic information.

Contributors

Agent

Created

Date Created
2011

152678-Thumbnail Image.png

Visual recognition for dynamic scenes

Description

Recognition memory was investigated for naturalistic dynamic scenes. Although visual recognition for static objects and scenes has been investigated previously and found to be extremely robust in terms of fidelity and retention, visual recognition for dynamic scenes has received much

Recognition memory was investigated for naturalistic dynamic scenes. Although visual recognition for static objects and scenes has been investigated previously and found to be extremely robust in terms of fidelity and retention, visual recognition for dynamic scenes has received much less attention. In four experiments, participants view a number of clips from novel films and are then tasked to complete a recognition test containing frames from the previously viewed films and difficult foil frames. Recognition performance is good when foils are taken from other parts of the same film (Experiment 1), but degrades greatly when foils are taken from unseen gaps from within the viewed footage (Experiments 3 and 4). Removing all non-target frames had a serious effect on recognition performance (Experiment 2). Across all experiments, presenting the films as a random series of clips seemed to have no effect on recognition performance. Patterns of accuracy and response latency in Experiments 3 and 4 appear to be a result of a serial-search process. It is concluded that visual representations of dynamic scenes may be stored as units of events, and participant's old
ew judgments of individual frames were better characterized by a cued-recall paradigm than traditional recognition judgments.

Contributors

Agent

Created

Date Created
2014

153549-Thumbnail Image.png

The recall dynamics of importance in delayed free recall

Description

An emerging literature on the relation between memory and importance has shown that people are able to selectively remember information that is more, relative to less important. Researchers in this field have operationalized importance by assigning value to the different

An emerging literature on the relation between memory and importance has shown that people are able to selectively remember information that is more, relative to less important. Researchers in this field have operationalized importance by assigning value to the different information that participants are asked to study and remember. In the present investigation I developed two experiments, using a slightly altered value-directed-remembering (VDR) paradigm, to investigate whether and how value modifies the dynamics of memory organization and search. Moreover, I asked participants to perform a surprise final free recall task in order to examine the effects of value in the recall dynamics of final free recall. In Experiment 1, I compared the recall dynamics of delayed and final free recall between a control and a value condition, in the latter of which numbers appeared next to words, in random order, denoting the value of remembering each word during recall. In Experiment 2, I manipulated the order of presentation of the values by adding an ascending and a descending condition where values were presented in either an ascending or a descending order, respectively. Overall, my results indicated that value affected several measures of delayed and final free recall, without, in most cases, taking away the serial position effects on those same measures.

Contributors

Agent

Created

Date Created
2015

153437-Thumbnail Image.png

Cognitive control processes underlying continuous and transient monitoring processes in event-based prospective memory

Description

A converging operations approach using response time distribution modeling was adopted to better characterize the cognitive control dynamics underlying ongoing task cost and cue detection in event based prospective memory (PM). In Experiment 1, individual differences analyses revealed that working

A converging operations approach using response time distribution modeling was adopted to better characterize the cognitive control dynamics underlying ongoing task cost and cue detection in event based prospective memory (PM). In Experiment 1, individual differences analyses revealed that working memory capacity uniquely predicted nonfocal cue detection, while proactive control and inhibition predicted variation in ongoing task cost of the ex-Gaussian parameter associated with continuous monitoring strategies (mu). In Experiments 2A and 2B, quasi-experimental techniques aimed at identifying the role of proactive control abilities in PM monitoring and cue detection suggested that low ability participants may have PM deficits during demanding tasks due to inefficient monitoring strategies, but that emphasizing importance of the intention can increase reliance on more efficacious monitoring strategies that boosts performance (Experiment 2A). Furthermore, high proactive control ability participants are able to efficiently regulate their monitoring strategies under scenarios that do not require costly monitoring for successful cue detection (Experiment 2B). In Experiments 3A and 3B, it was found that proactive control benefited cue detection in interference-rich environments, but the neural correlates of cue detection or intention execution did not differ when engaged in proactive versus reactive control. The results from the current set of studies highlight the importance of response time distribution modeling in understanding PM cost. Additionally, these results have important implications for extant theories of PM and have considerable applied ramifications concerning the cognitive control processes that should be targeted to improve PM abilities.

Contributors

Agent

Created

Date Created
2015

153559-Thumbnail Image.png

Joint action enhances motor learning

Description

ABSTRACT

Learning a novel motor pattern through imitation of the skilled performance of an expert has been shown to result in better learning outcomes relative to observational or physical practice. The aim of the present project was to examine if

ABSTRACT

Learning a novel motor pattern through imitation of the skilled performance of an expert has been shown to result in better learning outcomes relative to observational or physical practice. The aim of the present project was to examine if the advantages of imitational practice could be further augmented through a supplementary technique derived from my previous research. This research has provided converging behavioral evidence that dyads engaged in joint action in a familiar task requiring spatial and temporal synchrony end up developing an extended overlap in their body representations, termed a joint body schema (JBS). The present research examined if inducing a JBS between a trainer and a novice trainee, prior to having the dyad engage in imitation practice on a novel motor pattern would enhance both of the training process and its outcomes.

Participants either worked with their trainer on a familiar joint task to develop the JBS (Joint condition) or performed a solo equivalent of the task while being watched by their trainer (Solo condition). Participants In both groups then engaged in blocks of alternating imitation practice and free production of a novel manual motor pattern, while their motor output was recorded. Analyses indicated that the Joint participants outperformed the Solo participants in the ability to synchronize the spatial and temporal components of their imitation movements with the trainer’s pattern-modeling movements. The same group showed superior performance when attempting to freely produce the pattern. These results carry significant theoretical and translational potentials for the fields of motor learning and rehabilitation.

Contributors

Agent

Created

Date Created
2015

153222-Thumbnail Image.png

Investigations of the role of high-level cognitive skills in the text production process

Description

Writing is an intricate cognitive and social process that involves the production of texts for the purpose of conveying meaning to others. The importance of lower level cognitive skills and language knowledge during this text production process has been well

Writing is an intricate cognitive and social process that involves the production of texts for the purpose of conveying meaning to others. The importance of lower level cognitive skills and language knowledge during this text production process has been well documented in the literature. However, the role of higher level skills (e.g., metacognition, strategy use, etc.) has been less strongly emphasized. This thesis proposal examines higher level cognitive skills in the context of persuasive essay writing. Specifically, two published manuscripts are presented, which both examine the role of higher level skills in the context of writing. The first manuscript investigates the role of metacognition in the writing process by examining the accuracy and characteristics of students' self-assessments of their essays. The second manuscript takes an individual differences approach and examines whether the higher level cognitive skills commonly associated with reading comprehension are also related to performance on writing tasks. Taken together, these manuscripts point towards a strong role of higher level skills in the writing process and provide a strong foundation on which to develop future research and educational interventions.

Contributors

Agent

Created

Date Created
2014

152920-Thumbnail Image.png

Grounding concepts: physical interaction can provide minor benefit to category learning

Description

Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at

Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we may define these complex categories such as chairs, tables, or stairs by understanding the simpler rules defined by potential interactions with these objects. This concept, called grounding, allows for the learning and transfer of complex categorization rules if said rules are capable of being expressed in a more simple fashion by virtue of meaningful physical interactions. The present experiment tested this hypothesis by having participants engage in either a Rule Based (RB) or Information Integration (II) categorization task with instructions to engage with the stimuli in either a non-interactive or interactive fashion. If participants were capable of grounding the categories, which were defined in the II task with a complex visual rule, to a simpler interactive rule, then participants with interactive instructions should outperform participants with non-interactive instructions. Results indicated that physical interaction with stimuli had a marginally beneficial effect on category learning, but this effect seemed most prevalent in participants were engaged in an II task.

Contributors

Agent

Created

Date Created
2014