Matching Items (12)

134457-Thumbnail Image.png

Apparatus for Efficient Acquisition of Steering Friction Data

Description

Nissan technicians consistently test steering friction because it is a critical component for understanding and improving chassis dynamic performance. Due to the inaccuracy of a previous machine used, a new

Nissan technicians consistently test steering friction because it is a critical component for understanding and improving chassis dynamic performance. Due to the inaccuracy of a previous machine used, a new apparatus has been constructed to improve the repeatability and efficiency of a steering friction test. The automation and accurate calibration of the test ensures more accurate data compared to the previous machine. This will lead to more accurate decisions regarding the friction applied between the rack and pinion of a vehicle steering system. The Rack Pull Friction Test is an extremely important test performed by the Nissan Chassis Dynamics Technicians. How the driver experiences the car and if it is suitable for their needs is how the company can sell their vehicles. The test relates to how the customer experiences the steering effort of the vehicles when making small steering wheel corrections. It is important that the customer experiences a minimal steering effort on center feel but still strong enough to maintain control of the vehicle. Since the steering ability is a critical component of car handling, the testing must be performed to the optimum ability. Therefore, the attempt to perfect this test is important to improve the quality and the assurance that the vehicle is at maximum ability.

Contributors

Agent

Created

Date Created
  • 2017-05

134463-Thumbnail Image.png

A Study of Metal Additive Manufacturing: DMLS Design for Optimizing Automobile Components

Description

Automobiles can advance greatly with the introduction of metal additive manufactured components. Additive tooling is slowly becoming additive manufacturing and someday the technology will be advanced enough that high volume

Automobiles can advance greatly with the introduction of metal additive manufactured components. Additive tooling is slowly becoming additive manufacturing and someday the technology will be advanced enough that high volume can be supported. This research was conducted in order to show the advantages metal additive manufacturing has in the automobile industry. One large advantage to metal additive manufacturing is mass reduction. Components can be designed for production with different geometries than other manufacturing methods. The change in geometry can significantly reduce the product volume and therefore mass. Overall, mass reduction in the automotive industry is beneficial. Mass reduction can increase performance and fuel economy of the car. Once metal additive manufacturing becomes capable of higher production, metal additive manufacturing will play a major role in automobile manufacturing. Research was conducted to design and produce an optimized AC compressor bracket. The bracket was designed to the specifications of the OEM component, and the mass was reduced by more than half.

Contributors

Agent

Created

Date Created
  • 2017-05

134185-Thumbnail Image.png

A Novel Historical Safety Metric for Evaluating Road Networks

Description

37,461 automobile accident fatalities occured in the United States in 2016 ("Quick Facts 2016", 2017). Improving the safety of roads has traditionally been approached by governmental agencies including the National

37,461 automobile accident fatalities occured in the United States in 2016 ("Quick Facts 2016", 2017). Improving the safety of roads has traditionally been approached by governmental agencies including the National Highway Traffic Safety Administration and State Departments of Transporation. In past literature, automobile crash data is analyzed using time-series prediction technicques to identify road segments and/or intersections likely to experience future crashes (Lord & Mannering, 2010). After dangerous zones have been identified road modifications can be implemented improving public safety. This project introduces a historical safety metric for evaluating the relative danger of roads in a road network. The historical safety metric can be used to update routing choices of individual drivers improving public safety by avoiding historically more dangerous routes. The metric is constructed using crash frequency, severity, location and traffic information. An analysis of publically-available crash and traffic data in Allgeheny County, Pennsylvania is used to generate the historical safety metric for a specific road network. Methods for evaluating routes based on the presented historical safety metric are included using the Mann Whitney U Test to evaluate the significance of routing decisions. The evaluation method presented requires routes have at least 20 crashes to be compared with significance testing. The safety of the road network is visualized using a heatmap to present distribution of the metric throughout Allgeheny County.

Contributors

Agent

Created

Date Created
  • 2017-12

131087-Thumbnail Image.png

The Evolution of Automotive Engineering Technology in correlation between the Human Factors

Description

The focus of this research paper is understanding the impacts of human factors on the technology innovations in automobiles and the direction our society is headed. There will be an

The focus of this research paper is understanding the impacts of human factors on the technology innovations in automobiles and the direction our society is headed. There will be an assessment of our current state and the possible solutions to combat the issue of creating technology advancements for automobiles that cater towards the human factors. There will be an introduction on the history of the first automobile invented to provide an understanding of the what the first automobile consisted of and will continue discussing the technological innovations that were implemented due to human factors. Diving into the types of technological innovations such as the ignition system, car radio, the power steering system, and self-driving, it will show the progression of the technological advancements that was implemented in relation to the human factors that was prominent among society. From there, it is important to understand what human factors and the concept of human factor engineering are. It will provide a better understanding of why humans have created technology in relation to the human factors. Then, there will be an introduction of the mobile phone industry history/timeline as a comparison to show the impacts of how human factors have had on the development of the technology in mobile phones and how heavily it catered towards human factors. There will be a discussion of the 3 key human factors that have been catered towards the development and implementation of technology in automobiles. They are selecting the path that requires the least cognitive effort, overestimating the performance of technology, and reducing the attention due to an automated system being put into place. Lastly, is understanding that if we create or implement technology such as self-driving, it should not solely be for comfort and ease of use, but for the overall efficient use of transportation in the future. This way humans would not rely heavily too much on the technology and limit the effect that human factors have on us.

Contributors

Agent

Created

Date Created
  • 2020-05

137599-Thumbnail Image.png

Examining the Decline of the Automotive Industry

Description

The U.S. Automobile industry was once the crown jewel of America's industrial empire, nothing symbolized American industrial might like the auto plants of Detroit and the millions of cars it

The U.S. Automobile industry was once the crown jewel of America's industrial empire, nothing symbolized American industrial might like the auto plants of Detroit and the millions of cars it put on the road. However, after a spectacular rise in power and wealth after the Second World War, the Big 3 of the automotive industry, General Motors, Ford and Chrysler, have declined to the point of needing a government bailout to continue operation. This paper examines this decline by examining two narratives that describe its fall, and examines the theoretical and empirical evidence for both stories.

Contributors

Agent

Created

Date Created
  • 2013-05

148467-Thumbnail Image.png

Application of See-Through Car Pillars in the Automobile Industry

Description

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars in a car<br/>invisible to the driver so they can have an unobstructed view utilizing displays, sensors, and a<br/>computer. The first half of the paper provides the motivation, design and progress of the project, <br/>while the latter half provides a literature survey on current automobile trends, the viability of the<br/>See-Through Car Pillar as a product in the market through case studies, and alternative designs and <br/>technologies that also might address the problem statement.

Contributors

Agent

Created

Date Created
  • 2021-05

132111-Thumbnail Image.png

The Effect of Spoilers on Vehicle Aerodynamics and Performance

Description

An understanding of aerodynamics is crucial for automobile performance and efficiency. There are many types of “add-on” aerodynamic devices for cars including wings, splitters, and vortex generators. While these have

An understanding of aerodynamics is crucial for automobile performance and efficiency. There are many types of “add-on” aerodynamic devices for cars including wings, splitters, and vortex generators. While these have been studied extensively, rear spoilers have not, and their effects are not as widely known. A Computational Fluid Dynamics (CFD) and wind tunnel study was performed to study the effects of spoilers on vehicle aerodynamics and performance. Vehicle aerodynamics is geometry dependent, meaning what applies to one car may or may not apply on another. So, the Scion FRS was chosen as the test vehicle because it is has the “classic” sports car configuration with a long hood, short rear, and 2+2 passenger cabin while also being widely sold with a plethora of aftermarket aerodynamic modifications available. Due to computing and licensing restrictions, only a 2D CFD simulation was performed in ANSYS Fluent 19.1. A surface model of the centerline of the car was created in SolidWorks and imported into ANSYS, where the domain was created. A mesh convergence study was run to determine the optimum mesh size, and Realizable k-epsilon was the chosen physics model. The wind tunnel lacked equipment to record quantifiable data, so the wind tunnel was utilized for flow visualization on a 1/24 scale car model to compare with the CFD.

0° spoilers reduced the wake area behind the car, decreasing pressure drag but also decreasing underbody flow, causing a reduction in drag and downforce. Angled spoilers increased the wake area behind the car, increasing pressure drag but also increasing underbody flow, causing an increase in drag and downforce. Longer spoilers increased these effects compared to shorter spoilers, and short spoilers at different angles did not create significantly different effects. 0° spoilers would be best suited for cases that prioritize fuel economy or straight-line acceleration and speed due to the drag reduction, while angled spoilers would be best suited for cars requiring downforce. The angle and length of spoiler would depend on the downforce needed, which is dependent on the track.

Contributors

Agent

Created

Date Created
  • 2019-12

152208-Thumbnail Image.png

Estimations of reductions in household vehicle miles traveled under scenarios of shifts in vehicle type choice

Description

Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts.

Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households making more trips in larger vehicles with lower fuel economy. During the 1990s, SUVs were the fastest growing segment of the automotive industry, comprising 7% of the total light vehicle market in 1990, and 25% in 2005. More recently, due to rising oil prices, greater awareness to environmental sensitivity, the desire to reduce dependence on foreign oil, and the availability of new vehicle technologies, many households are considering the use of newer vehicles with better fuel economy, such as hybrids and electric vehicles, over the use of the SUV or low fuel economy vehicles they may already own. The goal of this research is to examine how vehicle miles traveled, fuel consumption and emissions may be reduced through shifts in vehicle type choice behavior. Using the 2009 National Household Travel Survey data it is possible to develop a model to estimate household travel demand and total fuel consumption. If given a vehicle choice shift scenario, using the model it would be possible to calculate the potential fuel consumption savings that would result from such a shift. In this way, it is possible to estimate fuel consumption reductions that would take place under a wide variety of scenarios.

Contributors

Agent

Created

Date Created
  • 2013

153116-Thumbnail Image.png

Cooling strategy for effective automotive power trains: 3D thermal modeling and multi-faceted approach for integrating thermoelectric modules into proton exchange membrane fuel cell stack

Description

Current hybrid vehicle and/or Fuel Cell Vehicle (FCV) use both FC and an electric system. The sequence of the electric power train with the FC system is intended to achieve

Current hybrid vehicle and/or Fuel Cell Vehicle (FCV) use both FC and an electric system. The sequence of the electric power train with the FC system is intended to achieve both better fuel economies than the conventional vehicles and higher performance. Current hybrids use regenerative braking technology, which converts the vehicles kinetic energy into electric energy instead of wasting it. A hybrid vehicle is much more fuel efficient than conventional Internal Combustion (IC) engine and has less environmental impact The new hybrid vehicle technology with it's advanced with configurations (i.e. Mechanical intricacy, advanced driving modes etc) inflict an intrusion with the existing Thermal Management System (TMS) of the conventional vehicles. This leaves for the opportunity for now thermal management issues which needed to be addressed. Till date, there has not been complete literature on thermal management issued of FC vehicles. The primary focus of this dissertation is on providing better cooling strategy for the advanced power trains. One of the cooling strategies discussed here is the thermo-electric modules.

The 3D Thermal modeling of the FC stack utilizes a Finite Differencing heat approach method augmented with empirical boundary conditions is employed to develop 3D thermal model for the integration of thermoelectric modules with Proton Exchange Membrane fuel cell stack. Hardware-in-Loop was designed under pre-defined drive cycle to obtain fuel cell performance parameters along with anode and cathode gas flow-rates and surface temperatures. The FC model, combined experimental and finite differencing nodal net work simulation modeling approach which implemented heat generation across the stack to depict the chemical composition process. The structural and temporal temperature contours obtained from this model are in compliance with the actual recordings obtained from the infrared detector and thermocouples. The Thermography detectors were set-up through dual band thermography to neutralize the emissivity and to give several dynamic ranges to achieve accurate temperature measurements. The thermocouples network was installed to provide a reference signal.

The model is harmonized with thermo-electric modules with a modeling strategy, which enables optimize better temporal profile across the stack. This study presents the improvement of a 3D thermal model for proton exchange membrane fuel cell stack along with the interfaced thermo-electric module. The model provided a virtual environment using a model-based design approach to assist the design engineers to manipulate the design correction earlier in the process and eliminate the need for costly and time consuming prototypes.

Contributors

Agent

Created

Date Created
  • 2014

150825-Thumbnail Image.png

Development of transition metal macrocyclic-catalysts supported on multi-walled carbon nanotubes for alkaline membrane fuel cell

Description

Low temperature fuel cells are very attractive energy conversion technology for automotive applications due to their qualities of being clean, quiet, efficient and good peak power densities. However, due to

Low temperature fuel cells are very attractive energy conversion technology for automotive applications due to their qualities of being clean, quiet, efficient and good peak power densities. However, due to high cost and limited durability and reliability, commercialization of this technology has not been possible as yet. The high fuel cell cost is mostly due to the expensive noble catalyst Pt. Alkaline fuel cell (AFC) systems, have potential to make use of non-noble catalysts and thus, provides with a solution of overall lower cost. Therefore, this issue has been addressed in this thesis work. Hydrogen-oxygen fuel cells using an alkaline anion exchange membrane were prepared and evaluated. Various non-platinum catalyst materials were investigated by fabricating membrane-electrode assemblies (MEAs) using Tokuyama membrane (# A201) and compared with commercial noble metal catalysts. Co and Fe phthalocyanine catalyst materials were synthesized using multi-walled carbon nanotubes (MWCNTs) as support materials. X-ray photoelectron spectroscopic study was conducted in order to examine the surface composition. The electroreduction of oxygen has been investigated on Fe phthalocyanine/MWCNT, Co phthalocyanine/MWCNT and commercial Pt/C catalysts. The oxygen reduction reaction kinetics on these catalyst materials were evaluated using rotating disk electrodes in 0.1 M KOH solution and the current density values were consistently higher for Co phthalocyanine based electrodes compared to Fe phthalocyanine. The fuel cell performance of the MEAs with Co and Fe phthalocyanines and Tanaka Kikinzoku Kogyo Pt/C cathode catalysts were 100, 60 and 120 mW cm-2 using H22 and O2 gases. This thesis also includes work on synthesizing nitrogen doped MWCNTs using post-doping and In-Situ methods. Post-doped N-MWNCTs were prepared through heat treatment with NH4OH as nitrogen source. Characterization was done through fuel cell testing, which gave peak power density ~40mW.cm-2. For In-Situ N-MWCT, pyridine was used as nitrogen source. The sample characterization was done using Raman spectroscopy and RBS, which showed the presence ~3 at.% of nitrogen on the carbon surface.

Contributors

Agent

Created

Date Created
  • 2012