Matching Items (4)
Filtering by

Clear all filters

153193-Thumbnail Image.png
Description
As the number of cores per chip increases, maintaining cache coherence becomes prohibitive for both power and performance. Non Coherent Cache (NCC) architectures do away with hardware-based cache coherence, but they become difficult to program. Some existing architectures provide a middle ground by providing some shared memory in the hardware.

As the number of cores per chip increases, maintaining cache coherence becomes prohibitive for both power and performance. Non Coherent Cache (NCC) architectures do away with hardware-based cache coherence, but they become difficult to program. Some existing architectures provide a middle ground by providing some shared memory in the hardware. Specifically, the 48-core Intel Single-chip Cloud Computer (SCC) provides some off-chip (DRAM) shared memory some on-chip (SRAM) shared memory. We call such architectures Hybrid Shared Memory, or HSM, manycore architectures. However, how to efficiently execute multi-threaded programs on HSM architectures is an open problem. To be able to execute a multi-threaded program correctly on HSM architectures, the compiler must: i) identify all the shared data and map it to the shared memory, and ii) map the frequently accessed shared data to the on-chip shared memory. This work presents a source-to-source translator written using CETUS that identifies a conservative superset of all the shared data in a multi-threaded application and maps it to the shared memory such that it enables execution on HSM architectures.
ContributorsRawat, Tushar (Author) / Shrivastava, Aviral (Thesis advisor) / Dasgupta, Partha (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2014
153265-Thumbnail Image.png
Description
Corporations invest considerable resources to create, preserve and analyze

their data; yet while organizations are interested in protecting against

unauthorized data transfer, there lacks a comprehensive metric to discriminate

what data are at risk of leaking.

This thesis motivates the need for a quantitative leakage risk metric, and

provides a risk assessment system,

Corporations invest considerable resources to create, preserve and analyze

their data; yet while organizations are interested in protecting against

unauthorized data transfer, there lacks a comprehensive metric to discriminate

what data are at risk of leaking.

This thesis motivates the need for a quantitative leakage risk metric, and

provides a risk assessment system, called Whispers, for computing it. Using

unsupervised machine learning techniques, Whispers uncovers themes in an

organization's document corpus, including previously unknown or unclassified

data. Then, by correlating the document with its authors, Whispers can

identify which data are easier to contain, and conversely which are at risk.

Using the Enron email database, Whispers constructs a social network segmented

by topic themes. This graph uncovers communication channels within the

organization. Using this social network, Whispers determines the risk of each

topic by measuring the rate at which simulated leaks are not detected. For the

Enron set, Whispers identified 18 separate topic themes between January 1999

and December 2000. The highest risk data emanated from the legal department

with a leakage risk as high as 60%.
ContributorsWright, Jeremy (Author) / Syrotiuk, Violet (Thesis advisor) / Davulcu, Hasan (Committee member) / Yau, Stephen (Committee member) / Arizona State University (Publisher)
Created2014
150382-Thumbnail Image.png
Description
This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.
ContributorsZhong, Yunji (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2011
153551-Thumbnail Image.png
Description
An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems

An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings.

This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.’s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.
ContributorsKarizi, Nasim (Author) / Reddy, T. Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Dasgupta, Partha (Committee member) / Kroelinger, Michael D. (Committee member) / Arizona State University (Publisher)
Created2015