Matching Items (3)
Filtering by

Clear all filters

150940-Thumbnail Image.png
Description
ABSTRACT Leadership in Energy and Environmental Design (LEED) is a non-governmental organization of U.S. Green Building Council (USGBC) which promotes a sustainable built environment with its rating systems. One of the building segments which it considers is healthcare, where it is a challenge to identify the most cost-effective variety of

ABSTRACT Leadership in Energy and Environmental Design (LEED) is a non-governmental organization of U.S. Green Building Council (USGBC) which promotes a sustainable built environment with its rating systems. One of the building segments which it considers is healthcare, where it is a challenge to identify the most cost-effective variety of complex equipments, to meet the demand for 24/7 health care and diagnosis, and implement various energy efficient strategies in inpatient hospitals. According to their “End Use Monitoring” study, Hospital Energy Alliances (HEA), an initiative of U.S. Department of Energy (DOE), reducing plug load reduces hospital energy consumption. The aim of this thesis is to investigate the extent to which realistic changes to the building envelope, together with HVAC and operation schedules would allow LEED credits to be earned in the DOE–hospital prototype. The scope of this research is to specifically investigate the inpatient block where patient stays longer. However, to obtain LEED credits the percentage cost saving should be considered along with the end use monitoring. Several steps have been taken to identify the optimal set of the end use results by adopting the Whole Building Energy Simulation option of the LEED Energy & Atmosphere (EA) pre– requisite 2: Minimum Energy Performance. The initial step includes evaluating certain LEED criteria consistent with ASHRAE Standard 90.1–2007 with the constraint that hospital prototype is to be upgraded from Standard 2004 to Standard 2007. The simulation method stipulates energy conservation measures as well as utility costing to enhance the LEED credits. A series of simulations with different values of Light Power Density, Sizing Factors, Chiller Coefficient of Performance, Boiler Efficiency, Plug Loads and utility cost were run for a variety of end uses with the extreme climatic condition of Phoenix. These assessments are then compared and used as a framework for a proposed interactive design decision approach. As a result, a total of 19.4% energy savings and 20% utility cost savings were achieved by the building simulation tool, which refer to 5 and 7 LEED credits respectively. The study develops a proper framework for future evaluations intended to achieve more LEED points.
ContributorsHaque, Sadia Khandaker (Author) / Reddy, T A (Thesis advisor) / Bryan, Harvey J. (Committee member) / Addison, Marlin S. (Committee member) / Arizona State University (Publisher)
Created2012
150908-Thumbnail Image.png
Description
In geographical locations with hot-arid climates, sun control in buildings is one primary problem to solve for the building envelope design. Today's technological advances in building science bring with them the opportunity to design dynamic façade systems for sun radiation control and daylighting. Although dynamic systems can become an attractive

In geographical locations with hot-arid climates, sun control in buildings is one primary problem to solve for the building envelope design. Today's technological advances in building science bring with them the opportunity to design dynamic façade systems for sun radiation control and daylighting. Although dynamic systems can become an attractive visual element, they can be costly and challenging to maintain for building owners. Alternatively, fixed solar-shading systems can be designed to create dynamism in the façade of the building, while providing similar functionalities for sun control. The work presented in this project focuses on the use of a visual scripting editor for modeling software, Grasshopper, to develop a Solar Control Visual Script that evaluates building envelope surfaces with planar and non-uniform rational basis-spline (NURBS) forms and provides projections for fixed sun control systems. The design platform of Grasshopper allows individuals with no experience or prior computer coding education to build up programming-like capabilities; this feature permits users to discover new design possibilities within flexible frames that can contribute to the overall design being pursued, while also having an environmental response. The Solar Control Visual Script provides minimum sizing geometries that achieve shading in openings at a particular date and time of the year. The model for this method of analysis makes use of three components to derive the appropriate values for the projections of shading geometries: typical meteorological year (TMY) data, irradiation isotropic equations and shading profile angles equations for vertical and tilted surfaces. Providing an automatic visual of generated geometries uncovers the opportunity to test several model forms and reiterates the analysis when modifying control parameters. By employing building science as a set of environmental parameters, the design outcome bears a dynamic form that responds to natural force conditions. The optimized results promote an efficient environmental design solution for sun control as an integral alternative into the building envelope.
ContributorsGrijalva, Karla (Author) / Bryan, Harvey J. (Thesis advisor) / Griffiths, Jason (Committee member) / Kroelinger, Michael D. (Committee member) / Arizona State University (Publisher)
Created2012
154682-Thumbnail Image.png
Description
Schools all around the country are improving the performance of their buildings by adopting high performance design principles. Higher levels of energy efficiency can pave the way for K-12 Schools to achieve net zero energy (NZE) conditions, a state where the energy generated by on-site renewable sources are sufficient to

Schools all around the country are improving the performance of their buildings by adopting high performance design principles. Higher levels of energy efficiency can pave the way for K-12 Schools to achieve net zero energy (NZE) conditions, a state where the energy generated by on-site renewable sources are sufficient to meet the cumulative annual energy demands of the facility. A key capability for the proliferation of Net Zero Energy Buildings (NZEB) is the need for a design methodology that identifies the optimum mix of energy efficient design features to be incorporated into the building. The design methodology should take into account the interaction effects of various energy efficiency measures as well as their associated costs so that life cycle cost can be minimized for the entire life span of the building.

This research aims at developing such a methodology for generating cost effective net zero energy solutions for school buildings. The Department of Energy (DOE) prototype primary school, meant to serve as the starting baseline, was modeled in the building energy simulation software eQUEST and made compliant with the requirement of ASHRAE 90.1-2007. Commonly used efficiency measures, for which credible initial cost and maintenance data were available, were selected as the parametric design set. An initial sensitivity analysis was conducted by using the Morris Method to rank the efficiency measures in terms of their importance and interaction strengths. A sequential search technique was adopted to search the solution space and identify combinations that lie near the Pareto-optimal front; this allowed various minimum cost design solutions to be identified corresponding to different energy savings levels.

Based on the results of this study, it was found that the cost optimal combination of measures over the 30 year analysis span resulted in an annual energy cost reduction of 47%, while net zero site energy conditions were achieved by the addition of a 435 kW photovoltaic generation system that covered 73% of the roof area. The simple payback period for the additional technology required to achieve NZE conditions was calculated to be 26.3 years and carried a 37.4% premium over the initial building construction cost. The study identifies future work in how to automate this computationally conservative search technique so that it can provide practical feedback to the building designer during all stages of the design process.
ContributorsIslam, Mohammad Moshfiqul (Author) / Reddy, T. Agami (Thesis advisor) / Bryan, Harvey J. (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2016