Matching Items (3)
Filtering by

Clear all filters

153988-Thumbnail Image.png
Description
With the advent of Internet, the data being added online is increasing at enormous rate. Though search engines are using IR techniques to facilitate the search requests from users, the results are not effective towards the search query of the user. The search engine user has to go through certain

With the advent of Internet, the data being added online is increasing at enormous rate. Though search engines are using IR techniques to facilitate the search requests from users, the results are not effective towards the search query of the user. The search engine user has to go through certain webpages before getting at the webpage he/she wanted. This problem of Information Overload can be solved using Automatic Text Summarization. Summarization is a process of obtaining at abridged version of documents so that user can have a quick view to understand what exactly the document is about. Email threads from W3C are used in this system. Apart from common IR features like Term Frequency, Inverse Document Frequency, Term Rank, a variation of page rank based on graph model, which can cluster the words with respective to word ambiguity, is implemented. Term Rank also considers the possibility of co-occurrence of words with the corpus and evaluates the rank of the word accordingly. Sentences of email threads are ranked as per features and summaries are generated. System implemented the concept of pyramid evaluation in content selection. The system can be considered as a framework for Unsupervised Learning in text summarization.
ContributorsNadella, Sravan (Author) / Davulcu, Hasan (Thesis advisor) / Li, Baoxin (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2015
153595-Thumbnail Image.png
Description
A major challenge in automated text analysis is that different words are used for related concepts. Analyzing text at the surface level would treat related concepts (i.e. actors, actions, targets, and victims) as different objects, potentially missing common narrative patterns. Generalized concepts are used to overcome this problem. Generalization may

A major challenge in automated text analysis is that different words are used for related concepts. Analyzing text at the surface level would treat related concepts (i.e. actors, actions, targets, and victims) as different objects, potentially missing common narrative patterns. Generalized concepts are used to overcome this problem. Generalization may result into word sense disambiguation failing to find similarity. This is addressed by taking into account contextual synonyms. Concept discovery based on contextual synonyms reveal information about the semantic roles of the words leading to concepts. Merger engine generalize the concepts so that it can be used as features in learning algorithms.
ContributorsKedia, Nitesh (Author) / Davulcu, Hasan (Thesis advisor) / Corman, Steve R (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015
155604-Thumbnail Image.png
Description
In recent years, several methods have been proposed to encode sentences into fixed length continuous vectors called sentence representation or sentence embedding. With the recent advancements in various deep learning methods applied in Natural Language Processing (NLP), these representations play a crucial role in tasks such as named entity recognition,

In recent years, several methods have been proposed to encode sentences into fixed length continuous vectors called sentence representation or sentence embedding. With the recent advancements in various deep learning methods applied in Natural Language Processing (NLP), these representations play a crucial role in tasks such as named entity recognition, question answering and sentence classification.

Traditionally, sentence vector representations are learnt from its constituent word representations, also known as word embeddings. Various methods to learn the distributed representation (embedding) of words have been proposed using the notion of Distributional Semantics, i.e. “meaning of a word is characterized by the company it keeps”. However, principle of compositionality states that meaning of a sentence is a function of the meanings of words and also the way they are syntactically combined. In various recent methods for sentence representation, the syntactic information like dependency or relation between words have been largely ignored.

In this work, I have explored the effectiveness of sentence representations that are composed of the representation of both, its constituent words and the relations between the words in a sentence. The word and relation embeddings are learned based on their context. These general-purpose embeddings can also be used as off-the- shelf semantic and syntactic features for various NLP tasks. Similarity Evaluation tasks was performed on two datasets showing the usefulness of the learned word embeddings. Experiments were conducted on three different sentence classification tasks showing that our sentence representations outperform the original word-based sentence representations, when used with the state-of-the-art Neural Network architectures.
ContributorsRath, Trideep (Author) / Baral, Chitta (Thesis advisor) / Li, Baoxin (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2017