Matching Items (10)
Filtering by

Clear all filters

155604-Thumbnail Image.png
Description
In recent years, several methods have been proposed to encode sentences into fixed length continuous vectors called sentence representation or sentence embedding. With the recent advancements in various deep learning methods applied in Natural Language Processing (NLP), these representations play a crucial role in tasks such as named entity recognition,

In recent years, several methods have been proposed to encode sentences into fixed length continuous vectors called sentence representation or sentence embedding. With the recent advancements in various deep learning methods applied in Natural Language Processing (NLP), these representations play a crucial role in tasks such as named entity recognition, question answering and sentence classification.

Traditionally, sentence vector representations are learnt from its constituent word representations, also known as word embeddings. Various methods to learn the distributed representation (embedding) of words have been proposed using the notion of Distributional Semantics, i.e. “meaning of a word is characterized by the company it keeps”. However, principle of compositionality states that meaning of a sentence is a function of the meanings of words and also the way they are syntactically combined. In various recent methods for sentence representation, the syntactic information like dependency or relation between words have been largely ignored.

In this work, I have explored the effectiveness of sentence representations that are composed of the representation of both, its constituent words and the relations between the words in a sentence. The word and relation embeddings are learned based on their context. These general-purpose embeddings can also be used as off-the- shelf semantic and syntactic features for various NLP tasks. Similarity Evaluation tasks was performed on two datasets showing the usefulness of the learned word embeddings. Experiments were conducted on three different sentence classification tasks showing that our sentence representations outperform the original word-based sentence representations, when used with the state-of-the-art Neural Network architectures.
ContributorsRath, Trideep (Author) / Baral, Chitta (Thesis advisor) / Li, Baoxin (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2017
187694-Thumbnail Image.png
Description
In the era of information explosion and multi-modal data, information retrieval (IR) and question answering (QA) systems have become essential in daily human activities. IR systems aim to find relevant information in response to user queries, while QA systems provide concise and accurate answers to user questions. IR and

In the era of information explosion and multi-modal data, information retrieval (IR) and question answering (QA) systems have become essential in daily human activities. IR systems aim to find relevant information in response to user queries, while QA systems provide concise and accurate answers to user questions. IR and QA are two of the most crucial challenges in the realm of Artificial Intelligence (AI), with wide-ranging real-world applications such as search engines and dialogue systems. This dissertation investigates and develops novel models and training objectives to enhance current retrieval systems in textual and multi-modal contexts. Moreover, it examines QA systems, emphasizing generalization and robustness, and creates new benchmarks to promote their progress. Neural retrievers have surfaced as a viable solution, capable of surpassing the constraints of traditional term-matching search algorithms. This dissertation presents Poly-DPR, an innovative multi-vector model architecture that manages test-query, and ReViz, a comprehensive multimodal model to tackle multi-modality queries. By utilizing IR-focused pretraining tasks and producing large-scale training data, the proposed methodology substantially improves the abilities of existing neural retrievers.Concurrently, this dissertation investigates the realm of QA systems, referred to as ``readers'', by performing an exhaustive analysis of current extractive and generative readers, which results in a reliable guidance for selecting readers for downstream applications. Additionally, an original reader (Two-in-One) is designed to effectively choose the pertinent passages and sentences from a pool of candidates for multi-hop reasoning. This dissertation also acknowledges the significance of logical reasoning in real-world applications and has developed a comprehensive testbed, LogiGLUE, to further the advancement of reasoning capabilities in QA systems.
ContributorsLuo, Man (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Committee member) / Blanco, Eduardo (Committee member) / Chen, Danqi (Committee member) / Arizona State University (Publisher)
Created2023
168406-Thumbnail Image.png
Description
Enabling robots to physically engage with their environment in a safe and efficient manner is an essential step towards human-robot interaction. To date, robots usually operate as pre-programmed workers that blindly execute tasks in highly structured environments crafted by skilled engineers. Changing the robots’ behavior to cover new duties or

Enabling robots to physically engage with their environment in a safe and efficient manner is an essential step towards human-robot interaction. To date, robots usually operate as pre-programmed workers that blindly execute tasks in highly structured environments crafted by skilled engineers. Changing the robots’ behavior to cover new duties or handle variability is an expensive, complex, and time-consuming process. However, with the advent of more complex sensors and algorithms, overcoming these limitations becomes within reach. This work proposes innovations in artificial intelligence, language understanding, and multimodal integration to enable next-generation grasping and manipulation capabilities in autonomous robots. The underlying thesis is that multimodal observations and instructions can drastically expand the responsiveness and dexterity of robot manipulators. Natural language, in particular, can be used to enable intuitive, bidirectional communication between a human user and the machine. To this end, this work presents a system that learns context-aware robot control policies from multimodal human demonstrations. Among the main contributions presented are techniques for (a) collecting demonstrations in an efficient and intuitive fashion, (b) methods for leveraging physical contact with the environment and objects, (c) the incorporation of natural language to understand context, and (d) the generation of robust robot control policies. The presented approach and systems are evaluated in multiple grasping and manipulation settings ranging from dexterous manipulation to pick-and-place, as well as contact-rich bimanual insertion tasks. Moreover, the usability of these innovations, especially when utilizing human task demonstrations and communication interfaces, is evaluated in several human-subject studies.
ContributorsStepputtis, Simon (Author) / Ben Amor, Heni (Thesis advisor) / Baral, Chitta (Committee member) / Yang, Yezhou (Committee member) / Lee, Stefan (Committee member) / Arizona State University (Publisher)
Created2021
187328-Thumbnail Image.png
Description
Models that learn from data are widely and rapidly being deployed today for real-world use, and have become an integral and embedded part of human lives. While these technological advances are exciting and impactful, such data-driven computer vision systems often fail in inscrutable ways. This dissertation seeks to study and

Models that learn from data are widely and rapidly being deployed today for real-world use, and have become an integral and embedded part of human lives. While these technological advances are exciting and impactful, such data-driven computer vision systems often fail in inscrutable ways. This dissertation seeks to study and improve the reliability of machine learning models from several perspectives including the development of robust training algorithms to mitigate the risks of such failures, construction of new datasets that provide a new perspective on capabilities of vision models, and the design of evaluation metrics for re-calibrating the perception of performance improvements. I will first address distribution shift in image classification with the following contributions: (1) two methods for improving the robustness of image classifiers to distribution shift by leveraging the classifier's failures into an adversarial data transformation pipeline guided by domain knowledge, (2) an interpolation-based technique for flagging out-of-distribution samples, and (3) an intriguing trade-off between distributional and adversarial robustness resulting from data modification strategies. I will then explore reliability considerations for \textit{semantic vision} models that learn from both visual and natural language data; I will discuss how logical and semantic sentence transformations affect the performance of vision--language models and my contributions towards developing knowledge-guided learning algorithms to mitigate these failures. Finally, I will describe the effort towards building and evaluating complex reasoning capabilities of vision--language models towards the long-term goal of robust and reliable computer vision models that can communicate, collaborate, and reason with humans.
ContributorsGokhale, Tejas (Author) / Yang, Yezhou (Thesis advisor) / Baral, Chitta (Thesis advisor) / Ben Amor, Heni (Committee member) / Anirudh, Rushil (Committee member) / Arizona State University (Publisher)
Created2023
157673-Thumbnail Image.png
Description
In this thesis, I present two new datasets and a modification to the existing models in the form of a novel attention mechanism for Natural Language Inference (NLI). The new datasets have been carefully synthesized from various existing corpora released for different tasks.

The task of NLI is to determine the

In this thesis, I present two new datasets and a modification to the existing models in the form of a novel attention mechanism for Natural Language Inference (NLI). The new datasets have been carefully synthesized from various existing corpora released for different tasks.

The task of NLI is to determine the possibility of a sentence referred to as “Hypothesis” being true given that another sentence referred to as “Premise” is true. In other words, the task is to identify whether the “Premise” entails, contradicts or remains neutral with regards to the “Hypothesis”. NLI is a precursor to solving many Natural Language Processing (NLP) tasks such as Question Answering and Semantic Search. For example, in Question Answering systems, the question is paraphrased to form a declarative statement which is treated as the hypothesis. The options are treated as the premise. The option with the maximum entailment score is considered as the answer. Considering the applications of NLI, the importance of having a strong NLI system can't be stressed enough.

Many large-scale datasets and models have been released in order to advance the field of NLI. While all of these models do get good accuracy on the test sets of the datasets they were trained on, they fail to capture the basic understanding of “Entities” and “Roles”. They often make the mistake of inferring that “John went to the market.” from “Peter went to the market.” failing to capture the notion of “Entities”. In other cases, these models don't understand the difference in the “Roles” played by the same entities in “Premise” and “Hypothesis” sentences and end up wrongly inferring that “Peter drove John to the stadium.” from “John drove Peter to the stadium.”

The lack of understanding of “Roles” can be attributed to the lack of such examples in the various existing datasets. The reason for the existing model’s failure in capturing the notion of “Entities” is not just due to the lack of such examples in the existing NLI datasets. It can also be attributed to the strict use of vector similarity in the “word-to-word” attention mechanism being used in the existing architectures.

To overcome these issues, I present two new datasets to help make the NLI systems capture the notion of “Entities” and “Roles”. The “NER Changed” (NC) dataset and the “Role-Switched” (RS) dataset contains examples of Premise-Hypothesis pairs that require the understanding of “Entities” and “Roles” respectively in order to be able to make correct inferences. This work shows how the existing architectures perform poorly on the “NER Changed” (NC) dataset even after being trained on the new datasets. In order to help the existing architectures, understand the notion of “Entities”, this work proposes a modification to the “word-to-word” attention mechanism. Instead of relying on vector similarity alone, the modified architectures learn to incorporate the “Symbolic Similarity” as well by using the Named-Entity features of the Premise and Hypothesis sentences. The new modified architectures not only perform significantly better than the unmodified architectures on the “NER Changed” (NC) dataset but also performs as well on the existing datasets.
ContributorsShrivastava, Ishan (Author) / Baral, Chitta (Thesis advisor) / Anwar, Saadat (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2019
157741-Thumbnail Image.png
Description
Question answering is a challenging problem and a long term goal of Artificial Intelligence. There are many approaches proposed to solve this problem, including end to end machine learning systems, Information Retrieval based approaches and Textual Entailment. Despite being popular, these methods find difficulty in solving problems that require multi

Question answering is a challenging problem and a long term goal of Artificial Intelligence. There are many approaches proposed to solve this problem, including end to end machine learning systems, Information Retrieval based approaches and Textual Entailment. Despite being popular, these methods find difficulty in solving problems that require multi level reasoning and combining independent pieces of knowledge, for example, a question like "What adaptation is necessary in intertidal ecosystems but not in reef ecosystems?'', requires the system to consider qualities, behaviour or features of an organism living in an intertidal ecosystem and compare with that of an organism in a reef ecosystem to find the answer. The proposed solution is to solve a genre of questions, which is questions based on "Adaptation, Variation and Behavior in Organisms", where there are various different independent sets of knowledge required for answering questions along with reasoning. This method is implemented using Answer Set Programming and Natural Language Inference (which is based on machine learning ) for finding which of the given options is more probable to be the answer by matching it with the knowledge base. To evaluate this approach, a dataset of questions and a knowledge base in the domain of "Adaptation, Variation and Behavior in Organisms" is created.
ContributorsBatni, Vaishnavi (Author) / Baral, Chitta (Thesis advisor) / Anwar, Saadat (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2019
157745-Thumbnail Image.png
Description
Artificial general intelligence consists of many components, one of which is Natural Language Understanding (NLU). One of the applications of NLU is Reading Comprehension where it is expected that a system understand all aspects of a text. Further, understanding natural procedure-describing text that deals with existence of entities and effects

Artificial general intelligence consists of many components, one of which is Natural Language Understanding (NLU). One of the applications of NLU is Reading Comprehension where it is expected that a system understand all aspects of a text. Further, understanding natural procedure-describing text that deals with existence of entities and effects of actions on these entities while doing reasoning and inference at the same time is a particularly difficult task. A recent natural language dataset by the Allen Institute of Artificial Intelligence, ProPara, attempted to address the challenges to determine entity existence and entity tracking in natural text.

As part of this work, an attempt is made to address the ProPara challenge. The Knowledge Representation and Reasoning (KRR) community has developed effective techniques for modeling and reasoning about actions and similar techniques are used in this work. A system consisting of Inductive Logic Programming (ILP) and Answer Set Programming (ASP) is used to address the challenge and achieves close to state-of-the-art results and provides an explainable model. An existing semantic role label parser is modified and used to parse the dataset.

On analysis of the learnt model, it was found that some of the rules were not generic enough. To overcome the issue, the Proposition Bank dataset is then used to add knowledge in an attempt to generalize the ILP learnt rules to possibly improve the results.
ContributorsBhattacharjee, Aurgho (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Committee member) / Anwar, Saadat (Committee member) / Arizona State University (Publisher)
Created2019
158353-Thumbnail Image.png
Description
Internet memes have become a widespread tool used by people for interacting and exchanging ideas over social media, blogs, and open messengers. Internet memes most commonly take the form of an image which is a combination of image, text, and humor, making them a powerful tool to deliver information. Image

Internet memes have become a widespread tool used by people for interacting and exchanging ideas over social media, blogs, and open messengers. Internet memes most commonly take the form of an image which is a combination of image, text, and humor, making them a powerful tool to deliver information. Image memes are used in viral marketing and mass advertising to propagate any ideas ranging from simple commercials to those that can cause changes and development in the social structures like countering hate speech.

This work proposes to treat automatic image meme generation as a translation process, and further present an end to end neural and probabilistic approach to generate an image-based meme for any given sentence using an encoder-decoder architecture. For a given input sentence, a meme is generated by combining a meme template image and a text caption where the meme template image is selected from a set of popular candidates using a selection module and the meme caption is generated by an encoder-decoder model. An encoder is used to map the selected meme template and the input sentence into a meme embedding space and then a decoder is used to decode the meme caption from the meme embedding space. The generated natural language caption is conditioned on the input sentence and the selected meme template.

The model learns the dependencies between the meme captions and the meme template images and generates new memes using the learned dependencies. The quality of the generated captions and the generated memes is evaluated through both automated metrics and human evaluation. An experiment is designed to score how well the generated memes can represent popular tweets from Twitter conversations. Experiments on Twitter data show the efficacy of the model in generating memes capable of representing a sentence in online social interaction.
ContributorsSadasivam, Aadhavan (Author) / Yang, Yezhou (Thesis advisor) / Baral, Chitta (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2020
168624-Thumbnail Image.png
Description
How to teach a machine to understand natural language? This question is a long-standing challenge in Artificial Intelligence. Several tasks are designed to measure the progress of this challenge. Question Answering is one such task that evaluates a machine's ability to understand natural language, where it reads a passage of

How to teach a machine to understand natural language? This question is a long-standing challenge in Artificial Intelligence. Several tasks are designed to measure the progress of this challenge. Question Answering is one such task that evaluates a machine's ability to understand natural language, where it reads a passage of text or an image and answers comprehension questions. In recent years, the development of transformer-based language models and large-scale human-annotated datasets has led to remarkable progress in the field of question answering. However, several disadvantages of fully supervised question answering systems have been observed. Such as generalizing to unseen out-of-distribution domains, linguistic style differences in questions, and adversarial samples. This thesis proposes implicitly supervised question answering systems trained using knowledge acquisition from external knowledge sources and new learning methods that provide inductive biases to learn question answering. In particular, the following research projects are discussed: (1) Knowledge Acquisition methods: these include semantic and abductive information retrieval for seeking missing knowledge, a method to represent unstructured text corpora as a knowledge graph, and constructing a knowledge base for implicit commonsense reasoning. (2) Learning methods: these include Knowledge Triplet Learning, a method over knowledge graphs; Test-Time Learning, a method to generalize to an unseen out-of-distribution context; WeaQA, a method to learn visual question answering using image captions without strong supervision; WeaSel, weakly supervised method for relative spatial reasoning; and a new paradigm for unsupervised natural language inference. These methods potentially provide a new research direction to overcome the pitfalls of direct supervision.
ContributorsBanerjee, Pratyay (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Committee member) / Blanco, Eduardo (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2022
168821-Thumbnail Image.png
Description
It is not merely an aggregation of static entities that a video clip carries, but alsoa variety of interactions and relations among these entities. Challenges still remain for a video captioning system to generate natural language descriptions focusing on the prominent interest and aligning with the latent aspects beyond observations. This work presents

It is not merely an aggregation of static entities that a video clip carries, but alsoa variety of interactions and relations among these entities. Challenges still remain for a video captioning system to generate natural language descriptions focusing on the prominent interest and aligning with the latent aspects beyond observations. This work presents a Commonsense knowledge Anchored Video cAptioNing (dubbed as CAVAN) approach. CAVAN exploits inferential commonsense knowledge to assist the training of video captioning model with a novel paradigm for sentence-level semantic alignment. Specifically, commonsense knowledge is queried to complement per training caption by querying a generic knowledge atlas ATOMIC, and form the commonsense- caption entailment corpus. A BERT based language entailment model trained from this corpus then serves as a commonsense discriminator for the training of video captioning model, and penalizes the model from generating semantically misaligned captions. With extensive empirical evaluations on MSR-VTT, V2C and VATEX datasets, CAVAN consistently improves the quality of generations and shows higher keyword hit rate. Experimental results with ablations validate the effectiveness of CAVAN and reveals that the use of commonsense knowledge contributes to the video caption generation.
ContributorsShao, Huiliang (Author) / Yang, Yezhou (Thesis advisor) / Jayasuriya, Suren (Committee member) / Xiao, Chaowei (Committee member) / Arizona State University (Publisher)
Created2022