Matching Items (1)
Filtering by

Clear all filters

157720-Thumbnail Image.png
Description
In this thesis, I investigate possible formation processes in the northern Claritas Fossae and the large Thaumasia graben on Mars. In particular, I assess three proposed formation hypotheses for the region: a mega-landslide across the Thaumasia plateau, originating in Tharsis and moving to the south-west; a rift system pulling apart

In this thesis, I investigate possible formation processes in the northern Claritas Fossae and the large Thaumasia graben on Mars. In particular, I assess three proposed formation hypotheses for the region: a mega-landslide across the Thaumasia plateau, originating in Tharsis and moving to the south-west; a rift system pulling apart Claritas Fossae and opening the large Thaumasia graben generally propagating in a north-south direction: and extension caused by uplifting from underlying dike swarms. Using digital terrain models (DTMs) from the High Resolution Stereo Camera (HRSC) aboard Mars Express and visual images from the Context Camera (CTX) aboard the Mars Reconnaissance Orbiter (MRO), I analyzed the geomorphic and structural context of the region. Specifically, I produced geomorphologic and structural feature maps, conducted sector diagram analyses of fault propagation direction, calculated and compared extension and strain in local and regional samples, analyzed along strike throw-profiles of faults, and conducted surface age estimates through crater counting. I found that no single formation mechanism fully explains the surface features seen in Northern Claritas Fossae today. Instead I, propose the following sequence of events led to the surface characteristics we now observe. The region most likely underwent two episodes of uplift and extension due to sub-surface magmatic intrusions, then experienced an extensional event which produced the large Thaumasia graben. This was followed by the emplacement of a layer of lava burying the bottom of the Thaumasia graben and the eastern edge of the region. Additional extension followed across the eastern portion of the study area, and finally of a young lava flow was emplaced abutting and overprinting the southwestern edge.
ContributorsStuder-Ellis, Genevieve Lynn (Author) / Williams, David A. (Thesis advisor) / Christensen, Philip R. (Thesis advisor) / Arrowsmith, J. R. (Committee member) / Arizona State University (Publisher)
Created2019