Matching Items (4)
Filtering by

Clear all filters

152607-Thumbnail Image.png
Description
The Himalaya are the archetypal example of a continental collision belt, formed by the ongoing convergence between India and Eurasia. Boasting some of the highest and most rugged topography on Earth, there is currently no consensus on how climatic and tectonic processes have combined to shape its topographic evolution. The

The Himalaya are the archetypal example of a continental collision belt, formed by the ongoing convergence between India and Eurasia. Boasting some of the highest and most rugged topography on Earth, there is currently no consensus on how climatic and tectonic processes have combined to shape its topographic evolution. The Kingdom of Bhutan in the eastern Himalaya provides a unique opportunity to study the interconnections among Himalayan climate, topography, erosion, and tectonics. The eastern Himalaya are remarkably different from the rest of the orogen, most strikingly due to the presence of the Shillong Plateau to the south of the Himalayan rangefront. The tectonic structures associated with the Shillong Plateau have accommodated convergence between India and Eurasia and created a natural experiment to test the possible response of the Himalaya to a reduction in local shortening. In addition, the position and orientation of the plateau topography has intercepted moisture once bound for the Himalaya and created a natural experiment to test the possible response of the range to a reduction in rainfall. I focused this study around the gently rolling landscapes found in the middle of the otherwise extremely rugged Bhutan Himalaya, with the understanding that these landscapes likely record a recent change in the evolution of the range. I have used geochronometric, thermochronometric, and cosmogenic nuclide techniques, combined with thermal-kinematic and landscape evolution models to draw three primary conclusions. 1) The cooling histories of bedrock samples from the hinterland of the Bhutan Himalaya show a protracted decrease in erosion rate from the Middle Miocene toward the Pliocene. I have attributed this change to a reduction in shortening rates across the Himalayan mountain belt, due to increased accommodation of shortening across the Shillong Plateau. 2) The low-relief landscapes of Bhutan were likely created by backtilting and surface uplift produced by an active, blind, hinterland duplex. These landscapes were formed during surface uplift, which initiated ca. 1.5 Ma and has totaled 800 m. 3) Millennial-scale erosion rates are coupled with modern rainfall rates. Non-linear relationships between topographic metrics and erosion rates, suggest a fundamental difference in the mode of river incision within the drier interior of Bhutan and the wetter foothills.
ContributorsAdams, Byron A (Author) / Whipple, Kelin X (Thesis advisor) / Hodges, Kip V (Thesis advisor) / Heimsath, Arjun M (Committee member) / Arrowsmith, Ramon (Committee member) / Hurtado, Jose M (Committee member) / Arizona State University (Publisher)
Created2014
171512-Thumbnail Image.png
Description
Mountain landscapes reflect competition between tectonic processes acting to build topography and erosive processes acting to wear it down. In temperate mountain landscapes, bedrock rivers are the primary erosional agent, setting both the pace of landscape evolution and form of the surrounding topography. Theory predicts that river steepness is sensitive

Mountain landscapes reflect competition between tectonic processes acting to build topography and erosive processes acting to wear it down. In temperate mountain landscapes, bedrock rivers are the primary erosional agent, setting both the pace of landscape evolution and form of the surrounding topography. Theory predicts that river steepness is sensitive to climatic, tectonic, and lithologic factors, which dictate the rates and mechanics of erosional processes. Thus, encoded into topography is an archive of information about forces driving landscape evolution. Decoding this archive, however, is fraught and climate presents a particularly challenging conundrum: despite decades of research describing theoretically how climate should affect topography, unambiguous natural examples from tectonically active landscapes where variations in climate demonstrably influence topography are elusive. In this dissertation, I first present a theoretical framework describing how the spatially varied nature of orographic rainfall patterns, which are ubiquitous features of mountain climates, complicate expectations about how climate should influence river steepness and erosion. I then apply some of these ideas to the northern-central Andes. By analyzing river profiles spanning more than 1500 km across Peru and Bolivia, I show that the regional orographic rainfall pattern this landscape experiences systematically influences fluvial erosional efficiency and thus topography. I also show how common simplifying assumptions built into conventional topographic analysis techniques may introduce biases that undermine detection of climatic signatures in landscapes where climate, tectonics, and lithology all covary – a common condition in mountain landscapes where these techniques are often used. I continue by coupling this analysis with published erosion rates and a new dataset of 25 cosmogenic 10Be catchment average erosion rates. Once the influence of climate is accounted for, functional relationships emerge among channel steepness, erosion rate, and lithology. I then use these functional relationships to produce a calibrated erosion rate map that spans over 300 km of the southern Peruvian Andes. These results demonstrate that accounting for the effects of climate significantly enhances the ability to decode channel steepness patterns. Along with this comes the potential to better understand rates and patterns of tectonic processes, and identify seismic hazards associated with tectonic activity using topography.
ContributorsLeonard, Joel Scott (Author) / Whipple, Kelin (Thesis advisor) / Arrowsmith, Ramon (Committee member) / Christensen, Philip (Committee member) / Forte, Adam (Committee member) / Heimsath, Arjun (Committee member) / Hodges, Kip (Committee member) / Arizona State University (Publisher)
Created2022
Description
Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of fault zones

Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of fault zones fans, relay ramps, and double faults, as well as the surface process response to the deformation and can thus indicate the activity of the fault zone and its potential hazard. “Rocky” fault scarps are unusual because they share characteristics of bedrock and alluvial fault scarps. The Volcanic Tablelands in Bishop, CA offer a natural laboratory with an array of rocky fault scarps. Machine learning mask-Region Convolutional Neural Network segments an orthophoto to identify individual particles along a specific rocky fault scarp. The resulting rock traits for thousands of particles along the scarp are used to develop conceptual models for rocky scarp geomorphology and evolution. In addition to rocky scarp classification, these tools may be useful in many sedimentary and volcanological applications for particle mapping and characterization.
ContributorsScott, Tyler (Author) / Arrowsmith, Ramon (Thesis advisor) / Das, Jnaneshwar (Committee member) / DeVecchio, Duane (Committee member) / Arizona State University (Publisher)
Created2020
131073-Thumbnail Image.png
Description
Faults found in the arid to semi-arid Basin and Range Physiographic province of the southwestern US are given broad age definitions in terms of which features appear to be the oldest. Particularly in the northwestern corner of Arizona, detailed geomorphic studies on the tectonic history and timing of faulting are

Faults found in the arid to semi-arid Basin and Range Physiographic province of the southwestern US are given broad age definitions in terms of which features appear to be the oldest. Particularly in the northwestern corner of Arizona, detailed geomorphic studies on the tectonic history and timing of faulting are not widespread. At the base of the Virgin Mountains in northwestern Arizona is a fault scarp along the Piedmont Fault line. This normal fault crosses a series of alluvial fans that are filled with sediments of ambiguous ages. Previous studies that were done in this region find a broad, Miocene age for the exhumation and uplift of these surfaces, with some indications of Laramide faulting history. However, specific fault characteristics and a time constraint of the tectonic history of the Piedmont Fault scarp has yet to be established. Here, we aim to determine the age, fault-slip rate, seismic history, and potential hazard of the fault scarp near Scenic and Littlefield, Arizona through structure from motion (SfM) modeling, which is a form of photogrammetry using a drone. In addition, we distinguish the climatic and tectonic influences on the geomorphology observed along the scarp through analysis along the fault line. With data collected from a ~500 m section of the fault, we present results from a digital elevation model (DEM) and orthophotos derived through the SfM modelling. Based on field observations and morphologic dating, we determine that the Piedmont Fault experiences an approximately continuous fault-slip and an earthquake recurrence interval in the range of 7,000 years. The approximate age of the scarp is 16.0 ka ± 5 kyr. Therefore, we conclude that the earthquake hazard posed to nearby cities is minimal but not nonexistent. Future work includes further analysis of fault profiles due to uncertainty in the present one and Terrestrial Cosmogenic Nuclide (TCN) dating of samples taken from the tops of boulders in a residual debris flow sitting on faulted and unfaulted alluvia. Determining the ages for these boulder surfaces can hopefully further inform our knowledge of the tectonic activity present in the North Virgin Mountains.
ContributorsApel, Emily Virginia (Author) / Heimsath, Arjun (Thesis director) / Arrowsmith, Ramon (Committee member) / Whipple, Kelin (Committee member) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12