Matching Items (9)
Filtering by

Clear all filters

151864-Thumbnail Image.png
Description
Growth of the Phoenix metropolitan area led to exposures of the internal bedrock structure of surrounding semi-arid mountain ranges as housing platforms or road cuts. Such exposures in the Sonoran and Mojave deserts reveal the presence of sedimentary calcium carbonate infilling the pre-existing fracture matrix of the bedrock. Field surveys

Growth of the Phoenix metropolitan area led to exposures of the internal bedrock structure of surrounding semi-arid mountain ranges as housing platforms or road cuts. Such exposures in the Sonoran and Mojave deserts reveal the presence of sedimentary calcium carbonate infilling the pre-existing fracture matrix of the bedrock. Field surveys of bedrock fractures filled with carbonate (BFFC) reveal an average of 0.079 +/- 0.024 mT C/m2 stored in the upper 2 m of analyzed bedrock exposures. Back-scattered electron microscopy images indicate the presence of carbonate at the micron scale, not included in this estimation. Analysis of the spatial extent of bedrock landforms in arid and semi-arid regions worldwide suggests that ~1485 GtC could potentially be stored in the upper 2 m horizon of BFFCs. Radiocarbon dating obtained at one of the sites indicates it is likely that some of the carbonate was flushed into the bedrock system during glacial wet pulses, and is stored on Pleistocene timescales or longer. Strontium isotope analysis at the same site suggest the potential for a substantial cation contribution from weathering of the local bedrock, indicating the potential exists for sequestration of atmospheric carbon in BFFCs. Rates of carbon release from BFFCs are tied to rates of erosion of bedrock ranges in desert climates.
ContributorsHarrison, Emma (Author) / Dorn, Ronald (Thesis advisor) / Reynolds, Stephen (Committee member) / Schmeeckle, Mark (Committee member) / Arizona State University (Publisher)
Created2013
151967-Thumbnail Image.png
Description
A fundamental gap in geomorphic scholarship regards fluvial terraces in small desert drainages and those terraces associated with integrating drainages. This dissertation analyzes four field-based case studies within the Sonoran Desert, south-central Arizona, with the overriding purpose of developing a theory to explain the formative processes and spatial distribution of

A fundamental gap in geomorphic scholarship regards fluvial terraces in small desert drainages and those terraces associated with integrating drainages. This dissertation analyzes four field-based case studies within the Sonoran Desert, south-central Arizona, with the overriding purpose of developing a theory to explain the formative processes and spatial distribution of fluvial terraces in the region. Strath terraces are a common form (Chapters 2, 3, 4) and are created at the expense of bounding pediments that occur on the margins of constraining mountainous drainage boundaries (Chapters 1, 2, 3). Base-level fluctuations of the major drainages cause the formation of new straths at lower elevations. Dramatic pediment adjustment and subsequent regrading follows (Chapter 3), where pediments regrade to strath floodplains. This linkage between pediments and their distal straths is termed the pediment-strath relationship. Stability of the base level of the major drainage leads to lateral migration and straths are carved at the expense of bounding pediments through an erosional asymmetry facilitated by differential rock decay between the channel bank and bed. Fill terraces occur within the Salt River drainage basin as a result of the integration processes that connect formerly endorheic basins (Chapter 4). The topographic, spatial, and sedimentologic relationship of the Stewart Mountain terrace (Chapter 4) points to a different genetic origin than the lower terraces in this basin. The high Stewart Mountain fill terrace records the initial integration of this river. The strath terraces inset below the Stewart Mountain terrace are a result of the pediment-strath relationship. These case studies also reveal that the under-addressed drainage processes of piracy and overflow have significant impacts in the evolution of drainages the lead to both strath and fill terrace formation in this region.
ContributorsLarson, Phillip Herman (Author) / Dorn, Ron I (Thesis advisor) / Schmeeckle, Mark (Thesis advisor) / Douglass, John (Committee member) / Cerveny, Randy (Committee member) / Arizona State University (Publisher)
Created2013
157196-Thumbnail Image.png
Description
Human endeavors move 7x more volume of earth than the world’s rivers accelerating the removal of Earth’s soil surface. Measuring anthropogenic acceleration of soil erosion requires knowledge of natural rates through the study of 10Be, but same-watershed comparisons between anthropogenically-accelerated and natural erosion rates do not exist for urbanizing watersheds.

Human endeavors move 7x more volume of earth than the world’s rivers accelerating the removal of Earth’s soil surface. Measuring anthropogenic acceleration of soil erosion requires knowledge of natural rates through the study of 10Be, but same-watershed comparisons between anthropogenically-accelerated and natural erosion rates do not exist for urbanizing watersheds. Here I show that urban sprawl from 1989 to 2013 accelerated soil erosion between 1.3x and 15x above natural rates for different urbanizing watersheds in the metropolitan Phoenix region, Sonoran Desert, USA, and that statistical modeling a century of urban sprawl indicates an acceleration of only 2.7x for the Phoenix region. Based on studies of urbanization’s erosive effects, and studies comparing other land-use changes to natural erosion rates, we expected a greater degree of urban acceleration. Given that continued urban expansion will add a new city of a million every five days until 2050, given the potential importance of urban soils for absorbing anthropogenically-released carbon, and given the role of urban-sourced pollution, quantifying urbanization’s acceleration of natural erosion in other urban settings could reveal important regional patterns. For example, a comparison of urban watersheds to nearby non-urban watersheds suggests that the Phoenix case study is on the low-end of the urban acceleration factor. This new insight into the urban acceleration of soil erosion in metropolitan Phoenix can help reduce the acute risk of flooding for many rapidly urbanizing desert cities around the globe. To reduce this risk, properly engineered Flood Control Structures must account for sediment accumulation as well as flood waters. While the Phoenix area used regional data from non-urban, non-desert watersheds to generate sediment yield rates, this research presents a new analysis of empirical data for the Phoenix metropolitan region, where two regression models provide estimates of a more realistic sediment accumulation for arid regions and also urbanization of a desert cities. The new model can be used to predict the realistic sediment accumulation for helping provide data where few data exists in parts of arid Africa, southwest Asia, and India.
ContributorsJeong, Ara (Author) / Dorn, Ronald I. (Thesis advisor) / Schmeeckle, Mark (Committee member) / Walker, Ian J. (Committee member) / Arizona State University (Publisher)
Created2019
155157-Thumbnail Image.png
Description
The morphology of mountainous areas is strongly influenced by stream bed incision rates, but most studies of landscape evolution consider erosion at basin scales or larger. The research here attempts to understand the smaller-scale mechanics of erosion on exposed bedrock channels in the conceptual framework of an established saltation-abrasion model

The morphology of mountainous areas is strongly influenced by stream bed incision rates, but most studies of landscape evolution consider erosion at basin scales or larger. The research here attempts to understand the smaller-scale mechanics of erosion on exposed bedrock channels in the conceptual framework of an established saltation-abrasion model by Sklar and Dietrich [2004]. The recirculating flume used in this experiment allows independent control of bed slope, water discharge rate, sediment flux, and sediment grain size – all factors often bundled together in simple models of river incision and typically cross-correlated in natural settings. This study investigates the mechanics of erosion on exposed bedrock channels caused by abrasion of transported particles. Of particular interest are saltating particles, as well as sediment near the threshold between saltation and suspension - sediment vigorously transported but with significant interaction with the bed. The size of these erosive tools are varied over an order of magnitude in mean grain diameter, including a sand of D¬50 = 0.56 mm, and three gravel sizes of 3.39, 4.63, and 5.88 mm. Special consideration was taken to prevent any flow conditions that created a persistent alluvial cover. The erodible concrete substrate is fully exposed at all times during experiments reported here. Rates of erosion into the concrete substrate (a bedrock proxy) were measured by comparing topographic data before and after each experimental run, made possible by a precision laser mounted on a high speed computer-controlled cart. The experimental flume was able to produce flow discharge as high as 75 liters per second, sediment fluxes (of many varieties) up to 215 grams per second, and bed slopes up to 10%. I find a general positive correlation is found between erosion rate and bed slope, shear stress, grain size, and sediment flux.
ContributorsAdams, Mark (Author) / Whipple, Kelin (Thesis advisor) / Heimsath, Arjun (Committee member) / Schmeeckle, Mark (Committee member) / Arizona State University (Publisher)
Created2016
149353-Thumbnail Image.png
Description
Fluctuating flow releases on regulated rivers destabilize downstream riverbanks, causing unintended, unnatural, and uncontrolled geomorphologic changes. These flow releases, usually a result of upstream hydroelectric dam operations, create manmade tidal effects that cause significant environmental damage; harm fish, vegetation, mammal, and avian habitats; and destroy riverbank camping and boating areas.

Fluctuating flow releases on regulated rivers destabilize downstream riverbanks, causing unintended, unnatural, and uncontrolled geomorphologic changes. These flow releases, usually a result of upstream hydroelectric dam operations, create manmade tidal effects that cause significant environmental damage; harm fish, vegetation, mammal, and avian habitats; and destroy riverbank camping and boating areas. This work focuses on rivers regulated by hydroelectric dams and have banks formed by sediment processes. For these systems, bank failures can be reduced, but not eliminated, by modifying flow release schedules. Unfortunately, comprehensive mitigation can only be accomplished with expensive rebuilding floods which release trapped sediment back into the river. The contribution of this research is to optimize weekly hydroelectric dam releases to minimize the cost of annually mitigating downstream bank failures. Physical process modeling of dynamic seepage effects is achieved through a new analytical unsaturated porewater response model that allows arbitrary periodic stage loading by Fourier series. This model is incorporated into a derived bank failure risk model that utilizes stochastic parameters identified through a meta-analysis of more than 150 documented slope failures. The risk model is then expanded to the river reach level by a Monte Carlos simulation and nonlinear regression of measured attenuation effects. Finally, the comprehensive risk model is subjected to a simulated annealing (SA) optimization scheme that accounts for physical, environmental, mechanical, operations, and flow constraints. The complete risk model is used to optimize the weekly flow release schedule of the Glen Canyon Dam, which regulates flow in the Colorado River within the Grand Canyon. A solution was obtained that reduces downstream failure risk, allows annual rebuilding floods, and predicts a hydroelectric revenue increase of more than 2%.
ContributorsTravis, Quentin Brent (Author) / Mays, Larry (Thesis advisor) / Schmeeckle, Mark (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2010
189298-Thumbnail Image.png
Description
Increasing rates of sea-level rise (SLR) pose a major threat to coastal communities around the world. Evidence of these impacts is found in increased rates of extreme weather, erosion, coastal flooding, high water levels and wave height, altered geomorphology, and more. Coastal dunes act as a buffer for neighboring ecosystems

Increasing rates of sea-level rise (SLR) pose a major threat to coastal communities around the world. Evidence of these impacts is found in increased rates of extreme weather, erosion, coastal flooding, high water levels and wave height, altered geomorphology, and more. Coastal dunes act as a buffer for neighboring ecosystems and protect inland communities from increased rates of SLR. The Eureka Littoral Cell (ELC) in Humboldt County, California, which extends from Trinidad Head in the north to Cape Mendocino in the south, experiences extreme wave conditions and higher rates of SLR in comparison to the rest of the Pacific Northwest. This study focuses on assessing the vulnerability of the outer-barrier system of the ELC to SLR and complements previous vulnerability assessments of the inner Humboldt Bay. The study area was partitioned into thirteen (13) representative study reaches based on shoreline change rates and geomorphology. Twenty-two (22) environmental and socio-economic variables were identified to characterize the broader human-environmental connections and exposures that define coastal vulnerability beyond basic physical forcing and exposures. The study first compiled and examined a range of physical, biological, hazardous, socio-cultural, and infrastructure attributes of the outer barrier region of the study site for their inherent vulnerabilities. Second, individual vulnerability scores, based on geographic attributes of each variable, were determined by modifying existing methodologies (e.g., USGS), spanning variable data ranges, and/or with feedback from local representatives and a research advisory team. Aggregations of individual variables were used to provide variable category groupings (e.g., physical, biological, hazards, socio-cultural, and infrastructure). Finally, aggregated values were normalized on a one-to-ten scale to determine two sub-categories of vulnerability (environmental, socio-economic) and an overall comprehensive vulnerability for each study reach. The resulting vulnerability assessments identify which reaches are likely to experience low, moderate, and high levels of vulnerability and, based on variable and sub-grouping values, what factors contribute to this vulnerability. As such, this study addresses the significance of including both environmental and socio-economic variables to examine and characterize vulnerability to SLR and it is anticipated that the results will help inform future adaptation and resilience planning in the region.
ContributorsShinsato, Lara Miyori (Author) / Dorn, Ron I (Thesis advisor) / Walker, Ian J (Thesis advisor) / Schmeeckle, Mark (Committee member) / Arizona State University (Publisher)
Created2023
189359-Thumbnail Image.png
Description
Sediment transport by atmospheric flows shapes landscapes on Earth and other planets. Improving the ability to quantify and predict sand transport by windblown (aeolian) processes has important implications for managing erosion, land degradation, desertification, dust emissions, air quality, and other climate change hazards and risks. Despite progress since Bagnold's seminal

Sediment transport by atmospheric flows shapes landscapes on Earth and other planets. Improving the ability to quantify and predict sand transport by windblown (aeolian) processes has important implications for managing erosion, land degradation, desertification, dust emissions, air quality, and other climate change hazards and risks. Despite progress since Bagnold's seminal works in the 1930s, the most frequently used aeolian sand transport equations show discrepancies between predicted and observed transport rates upwards of 300%. Differences of this magnitude strongly support re-examining how fundamental physical aeolian processes are expressed in predictive equations. Wind tunnel experiments using a Particle Imaging Velocimetry/Particle Tracking Velocimetry (PIV/PTV) system with a high-speed camera and high-powered laser were conducted to visualize fluid motions and sand particle trajectories to provide simultaneous measurements of wind flow and sand transport to re-examine the fundamental physical relationships between flow dynamics, sediment motions, and bedform development. The first experiment of this dissertation focuses on the characteristics of near-surface sand transport in the saltation cloud. From PTV particle trajectories, mean particle velocities appear independent of freestream wind speed, while velocity distribution characteristics (such as modality) and particle concentration intermittency vary with increasing sand transport. Particle trajectories from rippled bed runs show evidence of local slope influence on near-bed particle vectors. The second experiment used manual sand grain tracking to quantify particle-bed splash interactions. Results highlight that common rebound and ejecta functions do not sufficiently represent aeolian saltation splash events. Data indicate a shadowing effect of ripples, suggesting feedback between the saltation cloud, splash events, and bedform migration. The third experiment used dual PIV/PTV analysis to quantify fluid-particle interactions and compare sand concentrations with fluid stresses and turbulence characteristics through the saltation cloud. Results show that increased saltation leads to the disappearance of the constant fluid stress region, changes in aerodynamic roughness length, and increases in turbulence intensities. Leveraging technology advancements and multiple analysis methods, these results provide new, detailed information on the relationships between flow dynamics, sediment motions, and the presence of ripple bedforms. These novel empirical data illustrate some needed corrections to the theoretical and numerical frameworks for quantifying aeolian sand transport.
ContributorsKelley, Madeline (Author) / Schmeeckle, Mark (Thesis advisor) / Walker, Ian (Thesis advisor) / Dorn, Ron (Committee member) / Swann, Christy (Committee member) / Arizona State University (Publisher)
Created2023
171554-Thumbnail Image.png
Description
Rivers in steep mountainous landscapes control how, where, and when signals of base-level fall are transmitted to the surrounding topography. In doing so rivers play an important role in determining landscape evolution in response to external controls of tectonics and climate. However, tectonics and climate often covary and understanding how

Rivers in steep mountainous landscapes control how, where, and when signals of base-level fall are transmitted to the surrounding topography. In doing so rivers play an important role in determining landscape evolution in response to external controls of tectonics and climate. However, tectonics and climate often covary and understanding how they influence landscape evolution remains a significant challenge. The Hawaiian Islands, where tectonics are minimized but climate signals are amplified, provide an opportunity to better understand how signals of climate are recorded by landscapes. Focusing on the Hawaiian Islands, I examine (1) how variability in rock mass properties and thresholds in sediment mobility determine where waterfalls form or stall along the Nāpali coast of Kauaʻi, (2) I then extend these findings to other volcanoes to test if observed physical limits in flood size, climate, and volcano gradient can determine where waterfalls form, and (3) I explore how thresholds in river incision below waterfalls limit information about the influence of climate on river incision rates. Findings from this analysis show that waterfalls form or stall where the maximum unit stream power is at or below a critical unit stream power for bedrock river incision. Climate appears to have little effect in determining where these conditions are met but where waterfalls stall or form does record information about discharge-area scaling for global maximum observed floods. Below waterfalls the maximum incision depth for rivers on the island of Kauaʻi (which formed ~ 4-5 million years ago) is approximately proportional to the inverse square root of mean annual rainfall. Though maximum river incision depths for some of the younger volcanoes do not exhibit the same dependency on mean annual rainfall rates they are comparable to the maximum incision depths observed on Kauaʻi even though they are a quarter to one-tenth the age of Kauaʻi. Importantly, these patterns of incision can be explained by thresholds in sediment mobility as recorded by river longitudinal profiles and indicate that the Hawaiian Islands are dominated by threshold conditions where signals of climate are recorded in the topography through controls on incision depth but not incision rates.
ContributorsRaming, Logan Wren (Author) / Whipple, Kelin X (Thesis advisor) / Arrowsmith, Ramon (Committee member) / Heimsath, Arjun M. (Committee member) / DeVecchio, Duane E. (Committee member) / Schmeeckle, Mark (Committee member) / Arizona State University (Publisher)
Created2022
Description
Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of fault zones

Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of fault zones fans, relay ramps, and double faults, as well as the surface process response to the deformation and can thus indicate the activity of the fault zone and its potential hazard. “Rocky” fault scarps are unusual because they share characteristics of bedrock and alluvial fault scarps. The Volcanic Tablelands in Bishop, CA offer a natural laboratory with an array of rocky fault scarps. Machine learning mask-Region Convolutional Neural Network segments an orthophoto to identify individual particles along a specific rocky fault scarp. The resulting rock traits for thousands of particles along the scarp are used to develop conceptual models for rocky scarp geomorphology and evolution. In addition to rocky scarp classification, these tools may be useful in many sedimentary and volcanological applications for particle mapping and characterization.
ContributorsScott, Tyler (Author) / Arrowsmith, Ramon (Thesis advisor) / Das, Jnaneshwar (Committee member) / DeVecchio, Duane (Committee member) / Arizona State University (Publisher)
Created2020