Matching Items (5)
Filtering by

Clear all filters

153900-Thumbnail Image.png
Description
Olympus Mons is the largest volcano on Mars. Previous studies have focused on large scale features on Olympus Mons, such as the basal escarpment, summit caldera complex and aureole deposits. My objective was to identify and characterize previously unrecognized and unmapped small scale features to understand the volcanotectonic

Olympus Mons is the largest volcano on Mars. Previous studies have focused on large scale features on Olympus Mons, such as the basal escarpment, summit caldera complex and aureole deposits. My objective was to identify and characterize previously unrecognized and unmapped small scale features to understand the volcanotectonic evolution of this enormous volcano. For this study I investigated flank vents and arcuate graben. Flank vents are a common feature on composite volcanoes on Earth. They provide information on the volatile content of magmas, the propagation of magma in the subsurface and the tectonic stresses acting on the volcano. Graben are found at a variety of scales in close proximity to Martian volcanoes. They can indicate flexure of the lithosphere in response to the load of the volcano or gravitation spreading of the edifice. Using Context Camera (CTX), High Resolution Imaging Science Experiment (HiRISE), Thermal Emission Imaging System (THEMIS), High Resolution Stereo Camera Digital Terrain Model (HRSC DTM) and Mars Orbiter Laser Altimeter (MOLA) data, I have identified and characterized the morphology and distribution of 60 flank vents and 84 arcuate graben on Olympus Mons. Based on the observed vent morphologies, I conclude that effusive eruptions have dominated on Olympus Mons in the Late Amazonian, with flank vents playing a limited role. The spatial distribution of flank vents suggests shallow source depths and radial dike propagation. Arcuate graben, not previously observed in lower resolution datasets, occur on the lower flanks of Olympus Mons and indicate a recent extensional state of stress. Based on spatial and superposition relationships, I have constructed a developmental sequence for the construction of Olympus Mons: 1) Construction of the shield via effusive lava flows.; 2) Formation of the near summit thrust faults (flank terraces); 3) Flank failure leading to scarp formation and aureole deposition; 4) Late Amazonian effusive resurfacing and formation of flank vents; 5) Subsidence of the caldera, waning volcanism and graben formation. This volcanotectonic evolution closely resembles that proposed on Ascraeus Mons. Extensional tectonism may continue to affect the lower flanks of Olympus Mons today.
ContributorsPeters, Sean I. (Author) / Christensen, Philip R. (Thesis advisor) / Clarke, Amanda B (Committee member) / Whipple, Kelin X (Committee member) / Arizona State University (Publisher)
Created2015
156923-Thumbnail Image.png
Description
Previous workers hypothesized that lunar Localized Pyroclastic Deposits (LPDs) represent products of vulcanian-style eruptions, since some have low proportions of juvenile material. The objective of the first study is to determine how juvenile composition, calculated using deposit and vent volumes, varies among LPDs. I used Lunar Reconnaissance Orbiter Camera Narrow

Previous workers hypothesized that lunar Localized Pyroclastic Deposits (LPDs) represent products of vulcanian-style eruptions, since some have low proportions of juvenile material. The objective of the first study is to determine how juvenile composition, calculated using deposit and vent volumes, varies among LPDs. I used Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) digital terrain models (DTMs) to generate models of pre-eruption surfaces for 23 LPDs and subtracted them from the NAC DTMs to calculate deposit and vent volumes. Results show that LPDs have a wide range of juvenile compositions and thinning profiles, and that there is a positive relationship between juvenile material proportion and deposit size. These findings indicate there is greater diversity among LPDs than previously understood, and that a simple vulcanian eruption model may only apply to the smallest deposits.

There is consensus that martian outflow channels were formed by catastrophic flooding events, yet many of these channels exhibit lava flow features issuing from the same source as the eroded channels, leading some authors to suggest that lava may have served as their sole agent of erosion. This debate is addressed in two studies that use Context Camera images for photogeologic analysis, geomorphic mapping, and cratering statistics: (1) A study of Mangala Valles showing that it underwent at least two episodes of fluvial activity and at least three episodes of volcanic activity during the Late Amazonian, consistent with alternating episodes of flooding and volcanism. (2) A study of Maja Valles finds that it is thinly draped in lava flows sourced from Lunae Planum to the west, rendering it analogous to the lava-coated Elysium outflow systems. However, the source of eroded channels in Maja Valles is not the source of the its lava flows, which instead issue from south Lunae Planum. The failure of these lava flows to generate any major channels along their path suggests that the channels of Maja Valles are not lava-eroded.

Finally, I describe a method of locating sharp edges in out-of-focus images for application to automated trajectory control systems that use images from fixed-focus cameras to determine proximity to a target.
ContributorsKeske, Amber (Author) / Christensen, Philip R. (Thesis advisor) / Robinson, Mark S (Committee member) / Clarke, Amanda B (Committee member) / Whipple, Kelin X (Committee member) / Bell, James F. (Committee member) / Arizona State University (Publisher)
Created2018
154509-Thumbnail Image.png
Description
Shallow earthquakes in the upper part of the overriding plate of subduction zones can be devastating due to their proximity to population centers despite the smaller rupture extents than commonly occur on subduction megathrusts that produce the largest earthquakes. Damaging effects can be greater in volcanic arcs like Java

Shallow earthquakes in the upper part of the overriding plate of subduction zones can be devastating due to their proximity to population centers despite the smaller rupture extents than commonly occur on subduction megathrusts that produce the largest earthquakes. Damaging effects can be greater in volcanic arcs like Java because ground shaking is amplified by surficial deposits of uncompacted volcaniclastic sediments. Identifying the upper-plate structures and their potential hazards is key for minimizing the dangers they pose. In particular, the knowledge of the regional stress field and deformation pattern in this region will help us to better understand how subduction and collision affects deformation in this part of the overriding plate. The majority of the upper plate deformation studies have been focused on the deformation in the main thrusts of the fore-arc region. Study of deformation within volcanic arc is limited despite the associated earthquake hazards. In this study, I use maps of active upper-plate structures, earthquake moment tensor data and stress orientation deduced from volcano morphology analysis to characterize the strain field of Java arc. In addition, I use sandbox analog modeling to evaluate the mechanical factors that may be important in controlling deformation. My field- and remotely-based mapping of active faults and folds, supplemented by results from my paleoseismic studies and physical models of the system, suggest that Java’s deformation is distributed over broad areas along small-scale structures. Java is segmented into three main zones based on their distinctive structural patterns and stress orientation. East Java is characterized by NW-SE normal and strike-slip faults, Central Java has E-W folds and thrust faults, and NE-SW strike-slip faults dominate West Java. The sandbox analog models indicate that the strain in response to collision is partitioned into thrusting and strike-slip faulting, with the dominance of margin-normal thrust faulting. My models test the effects of convergence obliquity, geometry, preexisting weaknesses, asperities, and lateral strength contrast. The result suggest that slight variations in convergence obliquity do not affect the deformation pattern significantly, while the margin shape, lateral strength contrast, and perturbation of deformation from asperities each have a greater impact on deformation.
ContributorsMarliyani, Gayatri Indah (Author) / Arrowsmith, J Ramon (Thesis advisor) / Clarke, Amanda B (Committee member) / Hartnett, Hilairy (Committee member) / Whipple, Kelin (Committee member) / Garnero, Edward (Committee member) / Arizona State University (Publisher)
Created2016
Description
Lava flow emplacement in the laboratory and on the surface of Mars was investigated. In the laboratory, the effects of unsteady effusion rates at the vent on four modes of emplacement common to lava flow propagation: resurfacing, marginal breakouts, inflation, and lava tubes was addressed. A total

Lava flow emplacement in the laboratory and on the surface of Mars was investigated. In the laboratory, the effects of unsteady effusion rates at the vent on four modes of emplacement common to lava flow propagation: resurfacing, marginal breakouts, inflation, and lava tubes was addressed. A total of 222 experiments were conducted using a programmable pump to inject dyed PEG wax into a chilled bath (~ 0° C) in tanks with a roughened base at slopes of 0, 7, 16, and 29°. The experiments were divided into four conditions, which featured increasing or decreasing eruption rates for either 10 or 50 s. The primary controls on modes of emplacement were crust formation, variability in the eruption rate, and duration of the pulsatory flow rate. Resurfacing – although a relatively minor process – is inhibited by an extensive, coherent crust. Inflation requires a competent, flexible crust. Tube formation requires a crust and intermediate to low effusion rates. On Mars, laboratory analogue experiments combined with models that use flow dimensions to estimate emplacement conditions and using high resolution image data and digital terrain models (e.g. THEMIS IR, CTX, HRSC), the eruption rates, viscosities, and yield strengths of 40 lava flows in the Tharsis Volcanic Province have been quantified. These lava flows have lengths, mean widths, and mean thicknesses of 15 – 314 km, 0.5 – 29 km, and 11 – 91 m, respectively. Flow volumes range from ~1 – 430 km3. Based on laboratory experiments, the 40 observed lava flows were erupted at 0.2 – 6.5x103 m3/s, while the Graetz number and Jeffrey’s equation when applied to 34 of 40 lava flows indicates eruption rates and viscosities of 300 – ~3.5 x 104 m3/s and ~105 – 108 Pa s, respectively. Another model which accounts for mass loss to levee formation was applied to a subset of flows, n = 13, and suggests eruption rates and viscosities of ~30 – ~1.2 x 103 m3/s and 4.5 x 106 – ~3 x 107 Pa s, respectively. Emplacement times range from days to centuries indicating the necessity for long-term subsurface conduits capable of delivering enormous volumes of lava to the surface.
ContributorsPeters, Sean (Author) / Christensen, Philip R. (Thesis advisor) / Clarke, Amanda B (Committee member) / Fink, Jonathan H. (Committee member) / Whipple, Kelin X (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2020
Description
Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of fault zones

Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of fault zones fans, relay ramps, and double faults, as well as the surface process response to the deformation and can thus indicate the activity of the fault zone and its potential hazard. “Rocky” fault scarps are unusual because they share characteristics of bedrock and alluvial fault scarps. The Volcanic Tablelands in Bishop, CA offer a natural laboratory with an array of rocky fault scarps. Machine learning mask-Region Convolutional Neural Network segments an orthophoto to identify individual particles along a specific rocky fault scarp. The resulting rock traits for thousands of particles along the scarp are used to develop conceptual models for rocky scarp geomorphology and evolution. In addition to rocky scarp classification, these tools may be useful in many sedimentary and volcanological applications for particle mapping and characterization.
ContributorsScott, Tyler (Author) / Arrowsmith, Ramon (Thesis advisor) / Das, Jnaneshwar (Committee member) / DeVecchio, Duane (Committee member) / Arizona State University (Publisher)
Created2020