Matching Items (2)
Filtering by

Clear all filters

168402-Thumbnail Image.png
Description
Autonomous Robots have a tremendous potential to assist humans in environmental monitoring tasks. In order to generate meaningful data for humans to analyze, the robots need to collect accurate data and develop reliable representation of the environment. This is achieved by employing scalable and robust navigation and mapping algorithms that

Autonomous Robots have a tremendous potential to assist humans in environmental monitoring tasks. In order to generate meaningful data for humans to analyze, the robots need to collect accurate data and develop reliable representation of the environment. This is achieved by employing scalable and robust navigation and mapping algorithms that facilitate acquiring and understanding data collected from the array of on-board sensors. To this end, this thesis presents navigation and mapping algorithms for autonomous robots that can enable robot navigation in complexenvironments and develop real time semantic map of the environment respectively. The first part of the thesis presents a novel navigation algorithm for an autonomous underwater vehicle that can maintain a fixed distance from the coral terrain while following a human diver. Following a human diver ensures that the robot would visit all important sites in the coral reef while maintaining a constant distance from the terrain reduces heterscedasticity in the measurements. This algorithm was tested on three different synthetic terrains including a real model of a coral reef in Hawaii. The second part of the thesis presents a dense semantic surfel mapping technique based on top of a popular surfel mapping algorithm that can generate meaningful maps in real time. A semantic mask from a depth aligned RGB-D camera was used to assign labels to the surfels which were then probabilistically updated with multiple measurements. The mapping algorithm was tested with simulated data from an RGB-D camera and the results were analyzed.
ContributorsAntervedi, Lakshmi Gana Prasad (Author) / Das, Jnaneshwar (Thesis advisor) / Martin, Roberta E (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2021
Description
Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of fault zones

Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of fault zones fans, relay ramps, and double faults, as well as the surface process response to the deformation and can thus indicate the activity of the fault zone and its potential hazard. “Rocky” fault scarps are unusual because they share characteristics of bedrock and alluvial fault scarps. The Volcanic Tablelands in Bishop, CA offer a natural laboratory with an array of rocky fault scarps. Machine learning mask-Region Convolutional Neural Network segments an orthophoto to identify individual particles along a specific rocky fault scarp. The resulting rock traits for thousands of particles along the scarp are used to develop conceptual models for rocky scarp geomorphology and evolution. In addition to rocky scarp classification, these tools may be useful in many sedimentary and volcanological applications for particle mapping and characterization.
ContributorsScott, Tyler (Author) / Arrowsmith, Ramon (Thesis advisor) / Das, Jnaneshwar (Committee member) / DeVecchio, Duane (Committee member) / Arizona State University (Publisher)
Created2020