Matching Items (6)
Filtering by

Clear all filters

150749-Thumbnail Image.png
Description
Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients,

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients, such as iron, copper, and molybdenum. This work investigated the effects of BSC activity on soil solution concentrations of bioessential elements and examined the microbial production of organic chelators, called siderophores. I found that aluminum, vanadium, copper, zinc, and molybdenum were solubilized in the action of crusts, while nickel, zinc, arsenic, and zirconium were immobilized by crust activity. Potassium and manganese displayed behavior consistent with biological removal and mobilization, whereas phosphorus and iron solubility were dominated by abiotic processes. The addition of bioavailable nitrogen altered the effects of BSCs on soil element mobilization. In addition, I found that the biogeochemical activites of BSCs were limited by molybdenum, a fact that likely contributes to co-limitation by nitrogen. I confirmed the presence of siderophore producing microbes in BSCs. Siderophores are low-molecular weight organic compounds that are released by bacteria to increase element solubility and facilitate element uptake; siderophore production is likely the mechanism by which BSCs affect the patterns I observed in soil solution element concentrations. Siderophore producers were distributed across a range of bacterial groups and ecological niches within crusts, suggesting that siderophore production influences the availability of a variety of elements for use in many physiological processes. Four putative siderophore compounds were identified using electrospray ionization mass spectrometry; further attempts to characterize the compounds confirmed two true siderophores. Taken together, the results of my work provide information about micronutrient cycling within crusts that can be applied to BSC conservation and management. Fertilization with certain elements, particularly molybdenum, may prove to be a useful technique to promote BSC growth and development which would help prevent arid land degradation. Furthermore, understanding the effects of BSCs on soil element mobility could be used to develop useful biomarkers for the study of the existence and distribution of crust-like communities on ancient Earth, and perhaps other places, like Mars.
ContributorsNoonan, Kathryn Alexander (Author) / Hartnett, Hilairy (Thesis advisor) / Anbar, Ariel (Committee member) / Garcia-Pichel, Ferran (Committee member) / Shock, Everett (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
150819-Thumbnail Image.png
Description
Future robotic and human missions to the Moon and Mars will need in situ capabilities to characterize the mineralogy of rocks and soils within a microtextural context. Such spatially-correlated information is considered crucial for correct petrogenetic interpretations and will be key observations for assessing the potential for past habitability on

Future robotic and human missions to the Moon and Mars will need in situ capabilities to characterize the mineralogy of rocks and soils within a microtextural context. Such spatially-correlated information is considered crucial for correct petrogenetic interpretations and will be key observations for assessing the potential for past habitability on Mars. These data will also enable the selection of the highest value samples for further analysis and potential caching for return to Earth. The Multispectral Microscopic Imager (MMI), similar to a geologist's hand lens, advances the capabilities of current microimagers by providing multispectral, microscale reflectance images of geological samples, where each image pixel is comprised of a 21-band spectrum ranging from 463 to 1735 nm. To better understand the capabilities of the MMI in future surface missions to the Moon and Mars, geological samples comprising a range of Mars-relevant analog environments as well as 18 lunar rocks and four soils, from the Apollo collection were analyzed with the MMI. Results indicate that the MMI images resolve the fine-scale microtextural features of samples, and provide important information to help constrain mineral composition. Spectral end-member mapping revealed the distribution of Fe-bearing minerals (silicates and oxides), along with the presence of hydrated minerals. In the case of the lunar samples, the MMI observations also revealed the presence of opaques, glasses, and in some cases, the effects of space weathering in samples. MMI-based petrogenetic interpretations compare favorably with laboratory observations (including VNIR spectroscopy, XRD, and thin section petrography) and previously published analyses in the literature (for the lunar samples). The MMI was also deployed as part of the 2010 ILSO-ISRU field test on the slopes of Mauna Kea, Hawaii and inside the GeoLab as part of the 2011 Desert RATS field test at the Black Point Lava Flow in northern Arizona to better assess the performance of the MMI under realistic field conditions (including daylight illumination) and mission constraints to support human exploration. The MMI successfully imaged rocks and soils in outcrops and samples under field conditions and mission operation scenarios, revealing the value of the MMI to support future rover and astronaut exploration of planetary surfaces.
ContributorsNúñez Sánchez, Jorge Iván (Author) / Farmer, Jack D. (Thesis advisor) / Christensen, Philip R. (Committee member) / Garcia-Pichel, Ferran (Committee member) / Robinson, Mark S. (Committee member) / Sellar, R. Glenn (Committee member) / Williams, Lynda B. (Committee member) / Arizona State University (Publisher)
Created2012
152115-Thumbnail Image.png
Description
Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the

Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the SW United States predict changes in precipitation frequency as a major outcome of global warming, even if models differ on the sign and magnitude of the change. BSC organisms are clearly well adapted to withstand desiccation and prolonged drought, but it is unknown if and how an alteration of the precipitation frequency may impact community composition, diversity, and ecosystem functions. To test this, we set up a BSC microcosm experiment with variable precipitation frequency treatments using a local, cyanobacteria-dominated, early-succession BSC maintained under controlled conditions in a greenhouse. Precipitation pulse size was kept constant but 11 different drought intervals were imposed, ranging between 416 to 3 days, during a period of 416 days. At the end of the experiments, bacterial community composition was analyzed by pyrosequencing of the 16s rRNA genes in the community, and a battery of functional assays were used to evaluate carbon and nitrogen cycling potentials. While changes in community composition were neither marked nor consistent at the Phylum level, there was a significant trend of decreased diversity with increasing precipitation frequency, and we detected particular bacterial phylotypes that responded to the frequency of precipitation in a consistent manner (either positively or negatively). A significant trend of increased respiration with increasingly long drought period was detected, but BSC could recover quickly from this effect. Gross photosynthesis, nitrification and denitrification remained essentially impervious to treatment. These results are consistent with the notion that BSC community structure adjustments sufficed to provide significant functional resilience, and allow us to predict that future alterations in precipitation frequency are unlikely to result in severe impacts to BSC biology or ecological relevance.
ContributorsMyers, Natalie Kristine (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Hall, Sharon (Committee member) / Turner, Benjamin (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013
161966-Thumbnail Image.png
Description
The ability to find evidence of life on early Earth and other planets is constrained by the current understanding of biosignatures and our ability to differentiate fossils from abiotic mimics. When organisms transition from the living realm to the fossil record, their morphological and chemical characteristics are modified, usually resulting

The ability to find evidence of life on early Earth and other planets is constrained by the current understanding of biosignatures and our ability to differentiate fossils from abiotic mimics. When organisms transition from the living realm to the fossil record, their morphological and chemical characteristics are modified, usually resulting in the loss of information. These modifications can happen during early and late diagenesis and differ depending on local geochemical properties. These post-depositional modifications need to be understood to better interpret the fossil record. Siliceous hot spring deposits (sinters) are of particular interest for biosignature research as they are early Earth analog environments and targets for investigating the presence of fossil life on Mars. As silica-supersaturated fluids flow from the vent to the distal apron, they precipitate non-crystalline opal-A that fossilizes microbial communities at a range in scales (μm-cm). Therefore, many studies have documented the ties between the active microbial communities and the morphological and chemical biosignatures in hot springs. However, far less attention has been placed on understanding preservation in systems with complex mineralogy or how post-depositional alteration affects the retention of biosignatures. Without this context, it can be challenging to recognize biosignatures in ancient rocks. This dissertation research aims to refine our current understanding of biosignature preservation and retention in sinters. Biosignatures of interest include organic matter, microfossils, and biofabrics. The complex nature of hot springs requires a comprehensive understanding of biosignature preservation that is representative of variable chemistries and post-depositional alterations. For this reason, this dissertation research chapters are field site-based. Chapter 2 investigates biosignature preservation in an unusual spring with mixed opal-A-calcite mineralogy at Lýsuhóll, Iceland. Chapter 3 tracks how silica diagenesis modifies microfossil morphology and associated organic matter at Puchuldiza, Chile. Chapter 4 studies the effects of acid fumarolic overprinting on biosignatures in Gunnuhver, Iceland. To accomplish this, traditional geologic methods (mapping, petrography, X-ray diffraction, bulk elemental analyses) were combined with high-spatial-resolution elemental mapping to better understand diagenetic effects in these systems. Preservation models were developed to predict the types and styles of biosignatures that can be present depending on the depositional and geochemical context. Recommendations are also made for the types of deposits that are most likely to preserve biosignatures.
ContributorsJuarez Rivera, Marisol (Author) / Farmer, Jack D (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Shock, Everett (Committee member) / Garcia-Pichel, Ferran (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2021
153966-Thumbnail Image.png
Description
Biological soil crusts (BSCs) dominate the soil surface of drylands in the western United States and possess properties thought to influence local hydrology. Little agreement exists, however, on the effects of BSCs on runoff, infiltration, and evaporative rates. This study aims to improve the predictive capability of an ecohydrology model

Biological soil crusts (BSCs) dominate the soil surface of drylands in the western United States and possess properties thought to influence local hydrology. Little agreement exists, however, on the effects of BSCs on runoff, infiltration, and evaporative rates. This study aims to improve the predictive capability of an ecohydrology model in order to understand how BSCs affect the storage, retention, and infiltration of water into soils characteristic of the Colorado Plateau. A set of soil moisture measurements obtained at a climate manipulation experiment near Moab, Utah, are used for model development and testing. Over five years, different rainfall treatments over experimental plots resulted in the development of BSC cover with different properties that influence soil moisture differently. This study used numerical simulations to isolate the relative roles of different BSC properties on the hydrologic response at the plot-scale. On-site meteorological, soil texture and vegetation property datasets are utilized as inputs into a ecohydrology model, modified to include local processes: (1) temperature-dependent precipitation partitioning, snow accumulation and melt, (2) seasonally-variable potential evapotranspiration, (3) plant species-specific transpiration factors, and (4) a new module to account for the water balance of the BSC. Soil, BSC and vegetation parameters were determined from field measurements or through model calibration to the soil moisture observations using the Shuffled Complex Evolution algorithm. Model performance is assessed against five years of soil moisture measurements at each experimental site, representing a wide range of crust cover properties. Simulation experiments were then carried out using the calibrated ecohydrology model in which BSC parameters were varied according to the level of development of the BSC, as represented by the BSC roughness. These results indicate that BSCs act to both buffer against evaporative soil moisture losses by enhancing BSC moisture evaporation and significantly alter the rates of soil water infiltration by reducing moisture storage and increasing conductivity in the BSC. The simulation results for soil water infiltration, storage and retention across a wide range of meteorological events help explain the conflicting hydrologic outcomes present in the literature on BSCs. In addition, identifying how BSCs mediate infiltration and evaporation processes has implications for dryland ecosystem function in the western United States.
ContributorsWhitney, Kristen M (Author) / Vivoni, Enrique R (Thesis advisor) / Farmer, Jack D (Committee member) / Garcia-Pichel, Ferran (Committee member) / Arizona State University (Publisher)
Created2015
168497-Thumbnail Image.png
Description
With the development and successful landing of the NASA Perseverance rover, there has been growing interest in identifying how evidence of ancient life may be preserved and recognized in the geologic record. Environments that enable fossilization of biological remains are termed, “taphonomic windows”, wherein signatures of past life may be

With the development and successful landing of the NASA Perseverance rover, there has been growing interest in identifying how evidence of ancient life may be preserved and recognized in the geologic record. Environments that enable fossilization of biological remains are termed, “taphonomic windows”, wherein signatures of past life may be detected. In this dissertation, I have sought to identify taphonomic windows in planetary-analog environments with an eye towards the exploration of Mars. In the first chapter, I describe how evidence of past microbial life may be preserved within serpentinizing systems. Owing to energetic rock-water reactions, these systems are known to host lithotrophic and organotrophic microbial communities. By investigating drill cores from the Samail Ophiolite in Oman, I report morphological and associated chemical biosignatures preserved in these systems as a result of subsurface carbonation. As serpentinites are known to occur on Mars and potentially other planetary bodies, these deposits potentially represent high-priority targets in the exploration for past microbial life. Next, I investigated samples from Atacama Desert, Chile, to understand how evidence of life may be preserved in ancient sediments formed originally in evaporative playa lakes. Here, I describe organic geochemical and morphological evidence of life preserved within sulfate-dominated evaporite rocks from the Jurassic-Cretaceous Tonel Formation and Oligocene San Pedro Formation. Because evaporative lakes are considered to have been potentially widespread on Mars, these deposits may represent additional key targets to search for evidence of past life. In the final chapter, I describe the fossilization potential of surficial carbonates by investigating Crystal Geyser, an active cold spring environment. Here, carbonate minerals precipitate rapidly in the presence of photosynthetic microbial mat communities. I describe how potential biosignatures are initially captured by mineralization, including cell-like structures and microdigitate stromatolites. However, these morphological signatures quickly degrade owing to diagenetic dissolution and recrystallization reactions, as well as textural coarsening that homogenizes the carbonate fabric. Overall, my dissertation underscores the complexity of microbial fossilization and highlights chemically-precipitating environments that may serve as high-priority targets for astrobiological exploration.
ContributorsZaloumis, Jonathan (Author) / Farmer, Jack D (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Ruff, Steven W (Committee member) / Shock, Everett L (Committee member) / Arizona State University (Publisher)
Created2021