Matching Items (13)
Filtering by

Clear all filters

152313-Thumbnail Image.png
Description
Lunar Reconnaissance Orbiter (LRO) and MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft missions provide new data for investigating the youngest impact craters on Mercury and the Moon, along with lunar volcanic end-members: ancient silicic and young basaltic volcanism. The LRO Wide Angle Camera (WAC) and Narrow Angle Camera

Lunar Reconnaissance Orbiter (LRO) and MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft missions provide new data for investigating the youngest impact craters on Mercury and the Moon, along with lunar volcanic end-members: ancient silicic and young basaltic volcanism. The LRO Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) in-flight absolute radiometric calibration used ground-based Robotic Lunar Observatory and Hubble Space Telescope data as standards. In-flight radiometric calibration is a small aspect of the entire calibration process but an important improvement upon the pre-flight measurements. Calibrated reflectance data are essential for comparing images from LRO to missions like MESSENGER, thus enabling science through engineering. Relative regolith optical maturation rates on Mercury and the Moon are estimated by comparing young impact crater densities and impact ejecta reflectance, thus empirically testing previous models of faster rates for Mercury relative to the Moon. Regolith maturation due to micrometeorite impacts and solar wind sputtering modies UV-VIS-NIR surface spectra, therefore understanding maturation rates is critical for interpreting remote sensing data from airless bodies. Results determined the regolith optical maturation rate on Mercury is 2 to 4 times faster than on the Moon. The Gruithuisen Domes, three lunar silicic volcanoes, represent relatively rare lunar lithologies possibly similar to rock fragments found in the Apollo sample collection. Lunar nonmare silicic volcanism has implications for lunar magmatic evolution. I estimated a rhyolitic composition using morphologic comparisons of the Gruithuisen Domes, measured from NAC 2-meter-per-pixel digital topographic models (DTMs), with terrestrial silicic dome morphologies and laboratory models of viscoplastic dome growth. Small, morphologically sharp irregular mare patches (IMPs) provide evidence for recent lunar volcanism widely distributed across the nearside lunar maria, which has implications for long-lived nearside magmatism. I identified 75 IMPs (100-5000 meters in dimension) in NAC images and DTMs, and determined stratigraphic relationships between units common to all IMPs. Crater counts give model ages from 18-58 Ma, and morphologic comparisons with young lunar features provided an additional age constraint of <100 Ma. The IMPs formed as low-volume basaltic eruptions significantly later than previous evidence of lunar mare basalt volcanism's end (1-1.2 Ga).
ContributorsBraden, Sarah E (Author) / Robinson, Mark S (Thesis advisor) / Bell, James F. (Committee member) / Christensen, Philip R. (Committee member) / Clarke, Amanda B (Committee member) / Lawrence, Samuel J (Committee member) / Arizona State University (Publisher)
Created2013
156004-Thumbnail Image.png
Description
Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory

Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory and field studies are necessary to provide a scientific context for future lunar and Mars exploration. In this thesis, I use multiple techniques to investigate the presence of water-ice at the lunar poles and the properties of martian chloride minerals, whose evolution is intricately linked with liquid water.

Permanently shadowed regions (PSRs) at the lunar poles may contain substantial water ice, but radar signatures at PSRs could indicate water ice or large block populations. Mini-RF radar and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) products were used to assess block abundances where radar signatures indicated potential ice deposits. While the majority of PSRs in this study indicated large block populations and a low likelihood of water ice, one crater – Rozhdestvenskiy N – showed indirect indications of water ice in its interior.

Chloride deposits indicate regions where the last substantial liquid water existed on Mars. Major ion abundances and expected precipitation sequences of terrestrial chloride brines could provide context for assessing the provenance of martian chloride deposits. Chloride minerals are most readily distinguished in the far-infrared (45+ μm), where their fundamental absorption features are strongest. Multiple chloride compositions and textures were characterized in far-infrared emission for the first time. Systematic variations in the spectra were observed; these variations will allow chloride mineralogy to be determined and large variations in texture to be constrained.

In the present day, recurring slope lineae (RSL) may indicate water flow, but fresh water is not stable on Mars. However, dissolved chloride could allow liquid water to flow transiently. Using Thermal Emission Imaging System (THEMIS) data, I determined that RSL are most likely not fed by chloride-rich brines on Mars. Substantial amounts of salt would be consumed to produce a surface water flow; therefore, these features are therefore thought to instead be surface darkening due to capillary wicking.
ContributorsMitchell, Julie (Author) / Christensen, Philip R. (Thesis advisor) / Bell Iii, James F (Committee member) / Desch, Steven J (Committee member) / Hartnett, Hilairy E (Committee member) / Robinson, Mark S (Committee member) / Arizona State University (Publisher)
Created2017
156119-Thumbnail Image.png
Description
Impact cratering and volcanism are two fundamental processes that alter the surfaces of the terrestrial planets. Though well studied through laboratory experiments and terrestrial analogs, many questions remain regarding how these processes operate across the Solar System. Little is known about the formation of large impact basins (>300 km in

Impact cratering and volcanism are two fundamental processes that alter the surfaces of the terrestrial planets. Though well studied through laboratory experiments and terrestrial analogs, many questions remain regarding how these processes operate across the Solar System. Little is known about the formation of large impact basins (>300 km in diameter) and the degree to which they modify planetary surfaces. On the Moon, large impact basins dominate the terrain and are relatively well preserved. Because the lunar geologic timescale is largely derived from basin stratigraphic relations, it is crucial that we are able to identify and characterize materials emplaced as a result of the formation of the basins, such as light plains. Using high-resolution images under consistent illumination conditions and topography from the Lunar Reconnaissance Orbiter Camera (LROC), a new global map of light plains is presented at an unprecedented scale, revealing critical details of lunar stratigraphy and providing insight into the erosive power of large impacts. This work demonstrates that large basins significantly alter the lunar surface out to at least 4 radii from the rim, two times farther than previously thought. Further, the effect of pre-existing topography on the degradation of impact craters is unclear, despite their use in the age dating of surfaces. Crater measurements made over large regions of consistent coverage using LROC images and slopes derived from LROC topography show that pre-existing topography affects crater abundances and absolute model ages for craters up to at least 4 km in diameter.

On Mars, small volcanic edifices can provide valuable insight into the evolution of the crust and interior, but a lack of superposed craters and heavy mantling by dust make them difficult to age date. On Earth, morphometry can be used to determine the ages of cinder cone volcanoes in the absence of dated samples. Comparisons of high-resolution topography from the Context Imager (CTX) and a two-dimensional nonlinear diffusion model show that the forms observed on Mars could have been created through Earth-like processes, and with future work, it may be possible to derive an age estimate for these features in the absence of superposed craters or samples.
ContributorsMeyer, Heather (Author) / Robinson, Mark S (Thesis advisor) / Bell, Jim (Thesis advisor) / Denevi, Brett (Committee member) / Clarke, Amanda (Committee member) / Asphaug, Erik (Committee member) / Arizona State University (Publisher)
Created2018
Description
Remote sensing in visible to near-infrared wavelengths is an important tool for identifying and understanding compositional differences on planetary surfaces. Electronic transitions produce broad absorption bands that are often due to the presence of iron cations in crystalline mineral structures or amorphous phases. Mars’ iron-rich and variably oxidized surface provides

Remote sensing in visible to near-infrared wavelengths is an important tool for identifying and understanding compositional differences on planetary surfaces. Electronic transitions produce broad absorption bands that are often due to the presence of iron cations in crystalline mineral structures or amorphous phases. Mars’ iron-rich and variably oxidized surface provides an ideal environment for detecting spectral variations that can be related to differences in surface dust cover or the composition of the underlying bedrock. Several imaging cameras sent to Mars include the capability to selectively filter incoming light to discriminate between surface materials.

At the coarse spatial resolution provided by the wide-angle Mars Color Imager (MARCI) camera aboard the Mars Reconnaissance Orbiter (MRO), regional scale differences in reflectance at all wavelengths are dominated by the presence or absence of Fe3+-rich dust. The dust cover in many regions is highly variable, often with strong seasonal dependence although major storm events can redistribute dust in ways that significantly alter the albedo of large-scale regions outside of the normal annual cycle. Surface dust reservoirs represent an important part of the martian climate system and may play a critical role in the growth of regional dust storms to planet-wide scales. Detailed investigation of seasonal and secular changes permitted by repeated MARCI imaging coverage have allowed the surface dust coverage of the planet at large to be described and have revealed multiannual replenishing of regions historically associated with the growth of storms.

From the ground, rover-based multispectral imaging acquired by the Mastcam cameras allows compositional discrimination between bedrock units and float material encountered along the Curiosity rover’s traverse across crater floor and lower Mt. Sharp units. Mastcam spectra indicate differences in primary mineralogy, the presence of iron-bearing alteration phases, and variations in iron oxidation state, which occur at specific locations along the rover’s traverse. These changes represent differences in the primary depositional environment and the action of later alteration by fluids circulating through fractures in the bedrock. Loose float rocks sample materials brought into the crater by fluvial or other processes. Mastcam observations provide important constraints on the geologic history of the Gale Crater site.
ContributorsWellington, Danika (Author) / Bell Iii, James F (Thesis advisor) / Christensen, Philip R. (Committee member) / Robinson, Mark S (Committee member) / Sharp, Thomas G (Committee member) / Till, Christy B. (Committee member) / Arizona State University (Publisher)
Created2018
156923-Thumbnail Image.png
Description
Previous workers hypothesized that lunar Localized Pyroclastic Deposits (LPDs) represent products of vulcanian-style eruptions, since some have low proportions of juvenile material. The objective of the first study is to determine how juvenile composition, calculated using deposit and vent volumes, varies among LPDs. I used Lunar Reconnaissance Orbiter Camera Narrow

Previous workers hypothesized that lunar Localized Pyroclastic Deposits (LPDs) represent products of vulcanian-style eruptions, since some have low proportions of juvenile material. The objective of the first study is to determine how juvenile composition, calculated using deposit and vent volumes, varies among LPDs. I used Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) digital terrain models (DTMs) to generate models of pre-eruption surfaces for 23 LPDs and subtracted them from the NAC DTMs to calculate deposit and vent volumes. Results show that LPDs have a wide range of juvenile compositions and thinning profiles, and that there is a positive relationship between juvenile material proportion and deposit size. These findings indicate there is greater diversity among LPDs than previously understood, and that a simple vulcanian eruption model may only apply to the smallest deposits.

There is consensus that martian outflow channels were formed by catastrophic flooding events, yet many of these channels exhibit lava flow features issuing from the same source as the eroded channels, leading some authors to suggest that lava may have served as their sole agent of erosion. This debate is addressed in two studies that use Context Camera images for photogeologic analysis, geomorphic mapping, and cratering statistics: (1) A study of Mangala Valles showing that it underwent at least two episodes of fluvial activity and at least three episodes of volcanic activity during the Late Amazonian, consistent with alternating episodes of flooding and volcanism. (2) A study of Maja Valles finds that it is thinly draped in lava flows sourced from Lunae Planum to the west, rendering it analogous to the lava-coated Elysium outflow systems. However, the source of eroded channels in Maja Valles is not the source of the its lava flows, which instead issue from south Lunae Planum. The failure of these lava flows to generate any major channels along their path suggests that the channels of Maja Valles are not lava-eroded.

Finally, I describe a method of locating sharp edges in out-of-focus images for application to automated trajectory control systems that use images from fixed-focus cameras to determine proximity to a target.
ContributorsKeske, Amber (Author) / Christensen, Philip R. (Thesis advisor) / Robinson, Mark S (Committee member) / Clarke, Amanda B (Committee member) / Whipple, Kelin X (Committee member) / Bell, James F. (Committee member) / Arizona State University (Publisher)
Created2018
155860-Thumbnail Image.png
Description
Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped

Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped the evolution of early Earth, and provides the basis for estimating the ages of other cratered surfaces in the Solar System.

Many lunar impact melt rocks are complex mixtures of glassy and crystalline “melt” materials and inherited clasts of pre-impact minerals and rocks. If analyzed in bulk, these samples can yield complicated incremental release 40Ar/39Ar spectra, making it challenging to uniquely interpret impact ages. Here, I have used a combination of high-spatial resolution 40Ar/39Ar geochronology and thermal-kinetic modeling to gain new insights into the impact histories recorded by such lunar samples.

To compare my data to those of previous studies, I developed a software tool to account for differences in the decay, isotopic, and monitor age parameters used for different published 40Ar/39Ar datasets. Using an ultraviolet laser ablation microprobe (UVLAMP) system I selectively dated melt and clast components of impact melt rocks collected during the Apollo 16 and 17 missions. UVLAMP 40Ar/39Ar data for samples 77135, 60315, 61015, and 63355 show evidence of open-system behavior, and provide new insights into how to interpret some complexities of published incremental heating 40Ar/39Ar spectra. Samples 77115, 63525, 63549, and 65015 have relatively simple thermal histories, and UVLAMP 40Ar/39Ar data for the melt components of these rocks indicate the timing of impact events—spanning hundreds of millions of years—that influenced the Apollo 16 and 17 sites. My modeling and UVLAMP 40Ar/39Ar data for sample 73217 indicate that some impact melt rocks can quantitatively retain evidence for multiple melt-producing impact events, and imply that such polygenetic rocks should be regarded as high-value sampling opportunities during future exploration missions to cratered planetary surfaces. Collectively, my results complement previous incremental heating 40Ar/39Ar studies, and support interpretations that the Moon experienced a prolonged period of heavy bombardment early in its history.
ContributorsMercer, Cameron Mark (Author) / Hodges, Kip V (Thesis advisor) / Robinson, Mark S (Committee member) / Wadhwa, Meenakshi (Committee member) / Desch, Steven J (Committee member) / Hervig, Richard L (Committee member) / Arizona State University (Publisher)
Created2017
171565-Thumbnail Image.png
Description
Planetary mineralogy provides important clues about a planet’s geologic history, specifically how the planet first solidified and what geological processes have taken place since. I used spectral and composition data from the Mars Science Laboratory Curiosity rover to study some of the most recent geologic events on Mars. I also

Planetary mineralogy provides important clues about a planet’s geologic history, specifically how the planet first solidified and what geological processes have taken place since. I used spectral and composition data from the Mars Science Laboratory Curiosity rover to study some of the most recent geologic events on Mars. I also used modeled mineralogy of hypothetical exoplanets to understand the initial crystallization of exoplanets. Orbital data of Mt. Sharp, a ~5 km tall mound of sedimentary material, in Gale crater suggests that minerals associated with liquid water are present. These minerals, such as hydrated Mg-sulfates that are left behind as water evaporates, likely represent the beginning of Mars’ transition from a warm wet planet to the cold dry planet it is today.To understand how the mineralogy of Mt. Sharp changed, I used data from the Mastcam instrument on Curiosity to collect visible to near-infrared spectra of rocks from Vera Rubin Ridge and the Carolyn Shoemaker formation. Additionally, I collected laboratory spectra of powered binary mineral mixtures to understand how common minerals such as plagioclase, pyroxene, and hematite might obscure the spectral features of phyllosilicates and Mg-sulfates. Lastly, to better understanding Mars’ mineralogy, I analyzed numerous mixtures with Mg-sulfates in a nitrogen filled glovebox to better represent some of the environmental conditions of present-day Mars. Minerals such as phyllosilicates and Mg-sulfates, often referred to as secondary minerals, are only found on planets that have experienced alteration since the planet first solidified. The current level of understanding of Martian mineralogy has only been obtained after decades of sending numerous orbital and landed missions with intricate science instruments. But there is not this level of understanding for all planets, and especially not for planets outside of the solar system. Using modeled mineralogy, I deciphered the order in which primary minerals (i.e., olivine, pyroxenes, and plagioclase) could have formed as exoplanets first solidified. Understanding the mineralogy of planetary bodies gives insight into the geologic history of processes that cannot be seen, because they are no longer occurring, or even of planets that are difficult to find.
ContributorsJacob, Samantha Renee (Author) / Bell Iii, James F (Thesis advisor) / Till, Christy B (Committee member) / Desch, Steven J (Committee member) / Robinson, Mark S (Committee member) / Williams, David A (Committee member) / Arizona State University (Publisher)
Created2022
Description
Planetary surfaces are constantly evolving through a series of endogenic and exogenic processes. Multi-temporal observations enable the detection of these newly formed surface changes. Analysis techniques of these observations require precise image geolocation obtainable only with accurate optical and projection distortion corrections. In this study, the Clementine Ultraviolet-Visible camera is

Planetary surfaces are constantly evolving through a series of endogenic and exogenic processes. Multi-temporal observations enable the detection of these newly formed surface changes. Analysis techniques of these observations require precise image geolocation obtainable only with accurate optical and projection distortion corrections. In this study, the Clementine Ultraviolet-Visible camera is geometrically calibrated, and the spacecraft orientation knowledge is refined, aligning the entire dataset to the reference frame defined by the more recent Lunar Reconnaissance Orbiter mission. This direct registration approach improved the geolocation to within 0.084 pixels (i.e., sub-pixel), enabling new optical maturity and mineral composition maps aligned with the present reference frame.Next, new surface changes on Mercury are discovered with a geometrically calibrated Mercury Dual Imaging Camera suite. Over twenty surface changes varying in size from 450 to 4400 meters are identified that formed between 2011 to 2015. Exogenic impacts do not explain all the surface changes witnessed. Some changes occurred on slopes near prominent tectonic features suggesting a potential tie to seismic activity. A pair of other reflectance changes were identified around hollow formations, meaning the surface feature is still evolving. This temporal dataset provides the first direct evidence of endogenic and exogenic activities of the innermost planet. Lastly, the color and photometric properties of newly formed impact craters are explored using hundreds of observations acquired before and post-impact. These observations reveal new details about the distal surface changes associated with the impact process. Phase ratio imaging enables a measurement of the phase curve slope, including near opposition (phase ~ 0°). While the entire proximal ejecta blanket shows an increase in the optical surface roughness properties, the region adjacent to the crater rim (1.0 to 1.25 crater radii from the center) expresses a broadening of the opposition surge consistent with the presence of fine-scale surface particles and rocks. Finally, Hapke parameters and color maps are also derived for the entire region before and after the impact event to quantify changes in surface properties and the maturity state of the regolith. This work provides new insight into the broad extent of surface modifications around newly formed craters.
ContributorsSpeyerer, Emerson (Author) / Robinson, Mark S (Thesis advisor) / Bell, James F (Committee member) / Hervig, Richard L (Committee member) / Scowen, Paul A (Committee member) / Zolotov, Mikhail Y (Committee member) / Arizona State University (Publisher)
Created2023
189386-Thumbnail Image.png
Description
Space weathering of planetary surfaces is a complex process involving many mechanisms that work independently over different timescales. This research aims to address outstanding questions related to solar wind rim formation on space weathered regolith and tests a new hypothesis that dielectric breakdown plays an important role in the optical

Space weathering of planetary surfaces is a complex process involving many mechanisms that work independently over different timescales. This research aims to address outstanding questions related to solar wind rim formation on space weathered regolith and tests a new hypothesis that dielectric breakdown plays an important role in the optical maturation of lunar regolith. The purpose of this work is to highlight the limitations imposed by laboratory equipment to accurately simulate the solar wind’s effects on regolith and to provide physical context for the possible contributions of dielectric breakdown to space weathering. Terrestrial and lunar samples were experimentally irradiated and damage was characterized using electron microscopy techniques. Low-fluence proton irradiation produced differential weathering in a lunar mare basalt, with radiation damage on some phases being inconsistent with that found in the natural lunar environment. Dielectric breakdown of silicates revealed two electrical processes that produce characteristic surface and subsurface damage, in addition to amorphous rims. The results of this research highlight experimental parameters that if ignored, can significantly affect the results and interpretations of simulated solar wind weathering, and provides a framework for advancing space weathering research through experimental studies.
ContributorsShusterman, Morgan (Author) / Robinson, Mark S (Thesis advisor) / Sharp, Thomas G (Thesis advisor) / Hibbits, Charles (Committee member) / Bose, Maitrayee (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2023
189401-Thumbnail Image.png
Description
Both volcanic and tectonic landforms are surface expressions of the inner workings of a planet. On Earth, volcanism and crustal deformation are primarily surface expressions of plate tectonics. In contrast, the lunar crust has been deformed by solely endogenic processes following large impact events.The Procellarum KREEP (potassium (K), rare earth

Both volcanic and tectonic landforms are surface expressions of the inner workings of a planet. On Earth, volcanism and crustal deformation are primarily surface expressions of plate tectonics. In contrast, the lunar crust has been deformed by solely endogenic processes following large impact events.The Procellarum KREEP (potassium (K), rare earth elements (REE), and phosphorus (P)) Terrane (PKT) is a thermally and chemically distinct geologic province on the Moon. Despite the wealth of remote sensing data, the origin and evolution of the PKT is poorly understood. This study focuses on floor-fractured craters and silicic magma genesis within the PKT. First, I present a detailed study of floor-fractured craters, including morphometric measurements using topographic datasets from the Lunar Reconnaissance Orbiter Camera (LROC), variations in temporal heat flow, lithospheric rheology and the locations of floor-fractured craters relative to impact basins. The overarching conclusion is viscous relaxation and magmatic intrusion are not necessarily mutually exclusive, as has been argued in earlier studies. This work also provides new evidence for the existence of the putative Procellarum basin. Next, with rhyolite-MELTS modeling, I demonstrate that fractional crystallization of KREEP basalt magmas is a plausible mechanism for generating silicic melts. The results suggest that following crystallization, the composition of the remaining ~30 wt.% liquids are consistent with returned lunar silicic fragments. Finally, using crater counting methods I tested the stratigraphic relationship between the floor-fractured crater, Hansteen, and the silicic volcanic landform, Mons Hansteen. Absolute model ages (AMAs) suggest that the basalts on the floor of Hansteen crater formed contemporaneously with Mons Hansteen, implying that bimodal volcanism might have played a role in silicic magma genesis on the Moon.
ContributorsRavi, Srinidhi (Author) / Robinson, Mark S (Thesis advisor) / Till, Christy B (Committee member) / Watters, Thomas R (Committee member) / Whipple, Kelin X (Committee member) / O'Rourke, Joseph G (Committee member) / Arizona State University (Publisher)
Created2023