Matching Items (2)
Filtering by

Clear all filters

151203-Thumbnail Image.png
Description
This dissertation presents methods for the evaluation of ocular surface protection during natural blink function. The evaluation of ocular surface protection is especially important in the diagnosis of dry eye and the evaluation of dry eye severity in clinical trials. Dry eye is a highly prevalent disease affecting vast numbers

This dissertation presents methods for the evaluation of ocular surface protection during natural blink function. The evaluation of ocular surface protection is especially important in the diagnosis of dry eye and the evaluation of dry eye severity in clinical trials. Dry eye is a highly prevalent disease affecting vast numbers (between 11% and 22%) of an aging population. There is only one approved therapy with limited efficacy, which results in a huge unmet need. The reason so few drugs have reached approval is a lack of a recognized therapeutic pathway with reproducible endpoints. While the interplay between blink function and ocular surface protection has long been recognized, all currently used evaluation techniques have addressed blink function in isolation from tear film stability, the gold standard of which is Tear Film Break-Up Time (TFBUT). In the first part of this research a manual technique of calculating ocular surface protection during natural blink function through the use of video analysis is developed and evaluated for it's ability to differentiate between dry eye and normal subjects, the results are compared with that of TFBUT. In the second part of this research the technique is improved in precision and automated through the use of video analysis algorithms. This software, called the OPI 2.0 System, is evaluated for accuracy and precision, and comparisons are made between the OPI 2.0 System and other currently recognized dry eye diagnostic techniques (e.g. TFBUT). In the third part of this research the OPI 2.0 System is deployed for use in the evaluation of subjects before, immediately after and 30 minutes after exposure to a controlled adverse environment (CAE), once again the results are compared and contrasted against commonly used dry eye endpoints. The results demonstrate that the evaluation of ocular surface protection using the OPI 2.0 System offers superior accuracy to the current standard, TFBUT.
ContributorsAbelson, Richard (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie (Committee member) / Shunk, Dan (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2012
154216-Thumbnail Image.png
Description
The Partition of Variance (POV) method is a simplistic way to identify large sources of variation in manufacturing systems. This method identifies the variance by estimating the variance of the means (between variance) and the means of the variance (within variance). The project shows that the method correctly identifies the

The Partition of Variance (POV) method is a simplistic way to identify large sources of variation in manufacturing systems. This method identifies the variance by estimating the variance of the means (between variance) and the means of the variance (within variance). The project shows that the method correctly identifies the variance source when compared to the ANOVA method. Although the variance estimators deteriorate when varying degrees of non-normality is introduced through simulation; however, the POV method is shown to be a more stable measure of variance in the aggregate. The POV method also provides non-negative, stable estimates for interaction when compared to the ANOVA method. The POV method is shown to be more stable, particularly in low sample size situations. Based on these findings, it is suggested that the POV is not a replacement for more complex analysis methods, but rather, a supplement to them. POV is ideal for preliminary analysis due to the ease of implementation, the simplicity of interpretation, and the lack of dependency on statistical analysis packages or statistical knowledge.
ContributorsLittle, David John (Author) / Borror, Connie (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Broatch, Jennifer (Committee member) / Arizona State University (Publisher)
Created2015