Matching Items (5)
Filtering by

Clear all filters

151940-Thumbnail Image.png
Description
Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to our ability to understand and model core functionality. The progress in increasingly accurate and thorough high-throughput measurement technologies has provided

Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to our ability to understand and model core functionality. The progress in increasingly accurate and thorough high-throughput measurement technologies has provided a deluge of data from which we may attempt to infer a representation of the true genetic regulatory system. A gene regulatory network model, if accurate enough, may allow us to perform hypothesis testing in the form of computational experiments. Of great importance to modeling accuracy is the acknowledgment of biological contexts within the models -- i.e. recognizing the heterogeneous nature of the true biological system and the data it generates. This marriage of engineering, mathematics and computer science with systems biology creates a cycle of progress between computer simulation and lab experimentation, rapidly translating interventions and treatments for patients from the bench to the bedside. This dissertation will first discuss the landscape for modeling the biological system, explore the identification of targets for intervention in Boolean network models of biological interactions, and explore context specificity both in new graphical depictions of models embodying context-specific genomic regulation and in novel analysis approaches designed to reveal embedded contextual information. Overall, the dissertation will explore a spectrum of biological modeling with a goal towards therapeutic intervention, with both formal and informal notions of biological context, in such a way that will enable future work to have an even greater impact in terms of direct patient benefit on an individualized level.
ContributorsVerdicchio, Michael (Author) / Kim, Seungchan (Thesis advisor) / Baral, Chitta (Committee member) / Stolovitzky, Gustavo (Committee member) / Collofello, James (Committee member) / Arizona State University (Publisher)
Created2013
150126-Thumbnail Image.png
Description
Given the process of tumorigenesis, biological signaling pathways have become of interest in the field of oncology. Many of the regulatory mechanisms that are altered in cancer are directly related to signal transduction and cellular communication. Thus, identifying signaling pathways that have become deregulated may provide useful information

Given the process of tumorigenesis, biological signaling pathways have become of interest in the field of oncology. Many of the regulatory mechanisms that are altered in cancer are directly related to signal transduction and cellular communication. Thus, identifying signaling pathways that have become deregulated may provide useful information to better understanding altered regulatory mechanisms within cancer. Many methods that have been created to measure the distinct activity of signaling pathways have relied strictly upon transcription profiles. With advancements in comparative genomic hybridization techniques, copy number data has become extremely useful in providing valuable information pertaining to the genomic landscape of cancer. The purpose of this thesis is to develop a methodology that incorporates both gene expression and copy number data to identify signaling pathways that have become deregulated in cancer. The central idea is that copy number data may significantly assist in identifying signaling pathway deregulation by justifying the aberrant activity being measured in gene expression profiles. This method was then applied to four different subtypes of breast cancer resulting in the identification of signaling pathways associated with distinct functionalities for each of the breast cancer subtypes.
ContributorsTrevino, Robert (Author) / Kim, Seungchan (Thesis advisor) / Ringner, Markus (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2011
150901-Thumbnail Image.png
Description
Threshold logic has been studied by at least two independent group of researchers. One group of researchers studied threshold logic with the intention of building threshold logic circuits. The earliest research to this end was done in the 1960's. The major work at that time focused on studying mathematical properties

Threshold logic has been studied by at least two independent group of researchers. One group of researchers studied threshold logic with the intention of building threshold logic circuits. The earliest research to this end was done in the 1960's. The major work at that time focused on studying mathematical properties of threshold logic as no efficient circuit implementations of threshold logic were available. Recently many post-CMOS (Complimentary Metal Oxide Semiconductor) technologies that implement threshold logic have been proposed along with efficient CMOS implementations. This has renewed the effort to develop efficient threshold logic design automation techniques. This work contributes to this ongoing effort. Another group studying threshold logic did so, because the building block of neural networks - the Perceptron, is identical to the threshold element implementing a threshold function. Neural networks are used for various purposes as data classifiers. This work contributes tangentially to this field by proposing new methods and techniques to study and analyze functions implemented by a Perceptron After completion of the Human Genome Project, it has become evident that most biological phenomenon is not caused by the action of single genes, but due to the complex interaction involving a system of genes. In recent times, the `systems approach' for the study of gene systems is gaining popularity. Many different theories from mathematics and computer science has been used for this purpose. Among the systems approaches, the Boolean logic gene model has emerged as the current most popular discrete gene model. This work proposes a new gene model based on threshold logic functions (which are a subset of Boolean logic functions). The biological relevance and utility of this model is argued illustrated by using it to model different in-vivo as well as in-silico gene systems.
ContributorsLinge Gowda, Tejaswi (Author) / Vrudhula, Sarma (Thesis advisor) / Shrivastava, Aviral (Committee member) / Chatha, Karamvir (Committee member) / Kim, Seungchan (Committee member) / Arizona State University (Publisher)
Created2012
155019-Thumbnail Image.png
Description
In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression which prevents deleterious side effects from having too much or too little expression of genes on sex chromsomes. The green anole is part of a group of species that recently underwent an adaptive radiation. The green anole has XX/XY sex determination, but the content of the X chromosome and its evolution have not been described. Given its status as a model species, better understanding the green anole genome could reveal insights into other species. Genomic analyses are crucial for a comprehensive picture of sex chromosome differentiation and dosage compensation, in addition to understanding speciation.

In order to address this, multiple comparative genomics and bioinformatics analyses were conducted to elucidate patterns of evolution in the green anole and across multiple anole species. Comparative genomics analyses were used to infer additional X-linked loci in the green anole, RNAseq data from male and female samples were anayzed to quantify patterns of sex-biased gene expression across the genome, and the extent of dosage compensation on the anole X chromosome was characterized, providing evidence that the sex chromosomes in the green anole are dosage compensated.

In addition, X-linked genes have a lower ratio of nonsynonymous to synonymous substitution rates than the autosomes when compared to other Anolis species, and pairwise rates of evolution in genes across the anole genome were analyzed. To conduct this analysis a new pipeline was created for filtering alignments and performing batch calculations for whole genome coding sequences. This pipeline has been made publicly available.
ContributorsRupp, Shawn Michael (Author) / Wilson Sayres, Melissa A (Thesis advisor) / Kusumi, Kenro (Committee member) / DeNardo, Dale (Committee member) / Arizona State University (Publisher)
Created2016
151180-Thumbnail Image.png
Description
As we migrate into an era of personalized medicine, understanding how bio-molecules interact with one another to form cellular systems is one of the key focus areas of systems biology. Several challenges such as the dynamic nature of cellular systems, uncertainty due to environmental influences, and the heterogeneity between individual

As we migrate into an era of personalized medicine, understanding how bio-molecules interact with one another to form cellular systems is one of the key focus areas of systems biology. Several challenges such as the dynamic nature of cellular systems, uncertainty due to environmental influences, and the heterogeneity between individual patients render this a difficult task. In the last decade, several algorithms have been proposed to elucidate cellular systems from data, resulting in numerous data-driven hypotheses. However, due to the large number of variables involved in the process, many of which are unknown or not measurable, such computational approaches often lead to a high proportion of false positives. This renders interpretation of the data-driven hypotheses extremely difficult. Consequently, a dismal proportion of these hypotheses are subject to further experimental validation, eventually limiting their potential to augment existing biological knowledge. This dissertation develops a framework of computational methods for the analysis of such data-driven hypotheses leveraging existing biological knowledge. Specifically, I show how biological knowledge can be mapped onto these hypotheses and subsequently augmented through novel hypotheses. Biological hypotheses are learnt in three levels of abstraction -- individual interactions, functional modules and relationships between pathways, corresponding to three complementary aspects of biological systems. The computational methods developed in this dissertation are applied to high throughput cancer data, resulting in novel hypotheses with potentially significant biological impact.
ContributorsRamesh, Archana (Author) / Kim, Seungchan (Thesis advisor) / Langley, Patrick W (Committee member) / Baral, Chitta (Committee member) / Kiefer, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2012