Matching Items (3)
133254-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a serious health problem around the world with few available treatments. TBI pathology can be divided into two phases: the primary insult and the secondary injury. The primary insult results from the bump or blow to the head that causes the initial injury. Secondary injury

Traumatic brain injury (TBI) is a serious health problem around the world with few available treatments. TBI pathology can be divided into two phases: the primary insult and the secondary injury. The primary insult results from the bump or blow to the head that causes the initial injury. Secondary injury lasts from hours to months after the initial injury and worsens the primary insult, creating a greater area of tissue damage and cell death. Many current treatments focus on lessening the severity of secondary injury. Secondary injury results from the cyclical nature of tissue damage. Inflammatory pathways cause damage to tissue, which in turn reinforces inflammation. Since many inflammatory pathways are interconnected, targeting individual products within these pathways is impractical. A target at the beginning of the pathway, such as a receptor, must be chosen to break the cycle. This project aims to identify novel nanobodies that could temporarily inactivate the CD36 receptor, which is a receptor found on many immune and endothelial cells. CD36 initiates and perpetuates the immune system's inflammatory responses. By inactivating this receptor temporarily, inflammation and immune cell entry could be lessened, and therefore secondary injury could be attenuated. This project utilized phage display as a method of nanobody selection. The specific phage library utilized in this experiment consists of human heavy chain (V_H) segments, also known as domain antibodies (dAbs), displayed on M13 filamentous bacteriophage. Phage display mimics the process of immune selection. The target is bound to a well as a means of displaying it to the phage. The phage library is then incubated with the target to allow antibodies to bind. After, the well is washed thoroughly to detach any phage that are not strongly bound. The remaining phage are then amplified in bacteria and run again through the same assay to select for mutations that resulted in higher affinity binding. This process, called biopanning, was performed three times for this project. After biopanning, the library was sequenced using Next Generation sequencing (NGS). This platform enables the entire library to be sequenced, as opposed to traditional Sanger sequencing, which can only sequence single select clones at a time thereby limiting population sampling. This type of genetic sequencing allows trends in the complementarity determining regions (CDRs) of the domain antibody library to be analyzed, using bioinformatics programs such as RStudio, FastAptamer, and Swiss Model. Ultimately, two nanobody candidates were identified for the CD36 receptor.
ContributorsLundgreen, Kendall (Author) / Stabenfeldt, Sarah (Thesis director) / Ugarova, Tatiana (Committee member) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
157806-Thumbnail Image.png
Description
The WNT signaling pathway plays numerous roles in development and maintenance of adult homeostasis. In concordance with it’s numerous roles, dysfunction of WNT signaling leads to a variety of human diseases ranging from developmental disorders to cancer. WNT signaling is composed of a family of 19 WNT soluble secreted glycoproteins,

The WNT signaling pathway plays numerous roles in development and maintenance of adult homeostasis. In concordance with it’s numerous roles, dysfunction of WNT signaling leads to a variety of human diseases ranging from developmental disorders to cancer. WNT signaling is composed of a family of 19 WNT soluble secreted glycoproteins, which are evolutionarily conserved across all phyla of the animal kingdom. WNT ligands interact most commonly with a family of receptors known as frizzled (FZ) receptors, composed of 10 independent genes. Specific interactions between WNT proteins and FZ receptors are not well characterized and are known to be promiscuous, Traditionally canonical WNT signaling is described as a binary system in which WNT signaling is either off or on. In the ‘off’ state, in the absence of a WNT ligand, cytoplasmic β-catenin is continuously degraded by the action of the APC/Axin/GSK-3β destruction complex. In the ‘on’ state, when WNT binds to its Frizzled (Fz) receptor and LRP coreceptor, this protein destruction complex is disrupted, allowing β-catenin to translocate into the nucleus where it interacts with the DNA-bound T cell factor/lymphoid factor (TCF/LEF) family of proteins to regulate target gene expression. However in a variety of systems in development and disease canonical WNT signaling acts in a gradient fashion, suggesting more complex regulation of β-catenin transcriptional activity. As such, the traditional ‘binary’ view of WNT signaling does not clearly explain how this graded signal is transmitted intracellularly to control concentration-dependent changes in gene expression and cell identity. I have developed an in vitro human pluripotent stem cell (hPSC)-based model that recapitulates the same in vivo developmental effects of the WNT signaling gradient on the anterior-posterior (A/P) patterning of the neural tube observed during early development. Using RNA-seq and ChIP-seq I have characterized β-catenin binding at different levels of WNT signaling and identified different classes of β-catenin peaks that bind cis-regulatory elements to influence neural cell fate. This work expands the traditional binary view of canonical WNT signaling and illuminates WNT/β-catenin activity in other developmental and diseased contexts.
ContributorsCutts, Joshua Patrick (Author) / Brafman, David A (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Nikkhah, Mehdi (Committee member) / Wang, Xiao (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
Description
Recent studies in traumatic brain injury (TBI) have found a temporal window where therapeutics on the nanometer scale can cross the blood-brain barrier and enter the parenchyma. Developing protein-based therapeutics is attractive for a number of reasons, yet, the production pipeline for high yield and consistent bioactive recombinant proteins remains

Recent studies in traumatic brain injury (TBI) have found a temporal window where therapeutics on the nanometer scale can cross the blood-brain barrier and enter the parenchyma. Developing protein-based therapeutics is attractive for a number of reasons, yet, the production pipeline for high yield and consistent bioactive recombinant proteins remains a major obstacle. Previous studies for recombinant protein production has utilized gram-negative hosts such as Escherichia coli (E. coli) due to its well-established genetics and fast growth for recombinant protein production. However, using gram-negative hosts require lysis that calls for additional optimization and also introduces endotoxins and proteases that contribute to protein degradation. This project directly addressed this issue and evaluated the potential to use a gram-positive host such as Brevibacillus choshinensis (Brevi) which does not require lysis as the proteins are expressed directly into the supernatant. This host was utilized to produce variants of Stock 11 (S11) protein as a proof-of-concept towards this methodology. Variants of S11 were synthesized using different restriction enzymes which will alter the location of protein tags that may affect production or purification. Factors such as incubation time, incubation temperature, and media were optimized for each variant of S11 using a robust design of experiments. All variants of S11 were grown using optimized parameters prior to purification via affinity chromatography. Results showed the efficiency of using Brevi as a potential host for domain antibody production in the Stabenfeldt lab. Future aims will focus on troubleshooting the purification process to optimize the protein production pipeline.
ContributorsEmbrador, Glenna Bea Rebano (Author) / Stabenfeldt, Sarah (Thesis director) / Plaisier, Christopher (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05