Matching Items (6)
Filtering by

Clear all filters

150749-Thumbnail Image.png
Description
Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients,

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients, such as iron, copper, and molybdenum. This work investigated the effects of BSC activity on soil solution concentrations of bioessential elements and examined the microbial production of organic chelators, called siderophores. I found that aluminum, vanadium, copper, zinc, and molybdenum were solubilized in the action of crusts, while nickel, zinc, arsenic, and zirconium were immobilized by crust activity. Potassium and manganese displayed behavior consistent with biological removal and mobilization, whereas phosphorus and iron solubility were dominated by abiotic processes. The addition of bioavailable nitrogen altered the effects of BSCs on soil element mobilization. In addition, I found that the biogeochemical activites of BSCs were limited by molybdenum, a fact that likely contributes to co-limitation by nitrogen. I confirmed the presence of siderophore producing microbes in BSCs. Siderophores are low-molecular weight organic compounds that are released by bacteria to increase element solubility and facilitate element uptake; siderophore production is likely the mechanism by which BSCs affect the patterns I observed in soil solution element concentrations. Siderophore producers were distributed across a range of bacterial groups and ecological niches within crusts, suggesting that siderophore production influences the availability of a variety of elements for use in many physiological processes. Four putative siderophore compounds were identified using electrospray ionization mass spectrometry; further attempts to characterize the compounds confirmed two true siderophores. Taken together, the results of my work provide information about micronutrient cycling within crusts that can be applied to BSC conservation and management. Fertilization with certain elements, particularly molybdenum, may prove to be a useful technique to promote BSC growth and development which would help prevent arid land degradation. Furthermore, understanding the effects of BSCs on soil element mobility could be used to develop useful biomarkers for the study of the existence and distribution of crust-like communities on ancient Earth, and perhaps other places, like Mars.
ContributorsNoonan, Kathryn Alexander (Author) / Hartnett, Hilairy (Thesis advisor) / Anbar, Ariel (Committee member) / Garcia-Pichel, Ferran (Committee member) / Shock, Everett (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
152115-Thumbnail Image.png
Description
Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the

Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the SW United States predict changes in precipitation frequency as a major outcome of global warming, even if models differ on the sign and magnitude of the change. BSC organisms are clearly well adapted to withstand desiccation and prolonged drought, but it is unknown if and how an alteration of the precipitation frequency may impact community composition, diversity, and ecosystem functions. To test this, we set up a BSC microcosm experiment with variable precipitation frequency treatments using a local, cyanobacteria-dominated, early-succession BSC maintained under controlled conditions in a greenhouse. Precipitation pulse size was kept constant but 11 different drought intervals were imposed, ranging between 416 to 3 days, during a period of 416 days. At the end of the experiments, bacterial community composition was analyzed by pyrosequencing of the 16s rRNA genes in the community, and a battery of functional assays were used to evaluate carbon and nitrogen cycling potentials. While changes in community composition were neither marked nor consistent at the Phylum level, there was a significant trend of decreased diversity with increasing precipitation frequency, and we detected particular bacterial phylotypes that responded to the frequency of precipitation in a consistent manner (either positively or negatively). A significant trend of increased respiration with increasingly long drought period was detected, but BSC could recover quickly from this effect. Gross photosynthesis, nitrification and denitrification remained essentially impervious to treatment. These results are consistent with the notion that BSC community structure adjustments sufficed to provide significant functional resilience, and allow us to predict that future alterations in precipitation frequency are unlikely to result in severe impacts to BSC biology or ecological relevance.
ContributorsMyers, Natalie Kristine (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Hall, Sharon (Committee member) / Turner, Benjamin (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013
157820-Thumbnail Image.png
Description
There is a growing consensus that photodegradation accelerates litter decomposition in drylands, but the mechanisms are not well understood. In a previous field study examining how exposure to solar radiation affects decomposition of 12 leaf litter types over 34 months in the Sonoran Desert, litter exposed to UV/blue wavebands of

There is a growing consensus that photodegradation accelerates litter decomposition in drylands, but the mechanisms are not well understood. In a previous field study examining how exposure to solar radiation affects decomposition of 12 leaf litter types over 34 months in the Sonoran Desert, litter exposed to UV/blue wavebands of solar radiation decayed faster. The concentration of water-soluble compounds was higher in decayed litter than in new (recently senesced) litter, and higher in decayed litter exposed to solar radiation than other decayed litter. Microbial respiration of litter incubated in high relative humidity for 1 day was greater in decayed litter than new litter and greatest in decayed litter exposed to solar radiation. Respiration rates were strongly correlated with decay rates and water-soluble concentrations of litter. The objective of the current study was to determine why respiration rates were higher in decayed litter and why this effect was magnified in litter exposed to solar radiation. First, I evaluated whether photodegradation enhanced the quantity of dissolved organic carbon (DOC) in litter by comparing DOC concentrations of photodegraded litter to new litter. Second, I evaluated whether photodegradation increased the quality of DOC for microbial utilization by measuring respiration of leachates with equal DOC concentrations after applying them to a soil inoculum. I hypothesized that water vapor sorption may explain differences in respiration among litter age or sunlight exposure treatments. Therefore, I assessed water vapor sorption of litter over an 8-day incubation in high relative humidity. Water vapor sorption rates over 1 and 8 days were slower in decayed than new litter and not faster in photodegraded than other decayed litter. However, I found that 49-78% of the variation in respiration could be explained by the relative amount of water litter absorbed over 1 day compared to 8 days, a measure referred to as relative water content. Decayed and photodegraded litter had higher relative water content after 1 day because it had a lower water-holding capacity. Higher respiration rates of decayed and photodegraded litter were attributed to faster microbial activation due to greater relative water content of that litter.
ContributorsBliss, Michael Scott (Author) / Day, Thomas A. (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Throop, Heather L. (Committee member) / Arizona State University (Publisher)
Created2019
153966-Thumbnail Image.png
Description
Biological soil crusts (BSCs) dominate the soil surface of drylands in the western United States and possess properties thought to influence local hydrology. Little agreement exists, however, on the effects of BSCs on runoff, infiltration, and evaporative rates. This study aims to improve the predictive capability of an ecohydrology model

Biological soil crusts (BSCs) dominate the soil surface of drylands in the western United States and possess properties thought to influence local hydrology. Little agreement exists, however, on the effects of BSCs on runoff, infiltration, and evaporative rates. This study aims to improve the predictive capability of an ecohydrology model in order to understand how BSCs affect the storage, retention, and infiltration of water into soils characteristic of the Colorado Plateau. A set of soil moisture measurements obtained at a climate manipulation experiment near Moab, Utah, are used for model development and testing. Over five years, different rainfall treatments over experimental plots resulted in the development of BSC cover with different properties that influence soil moisture differently. This study used numerical simulations to isolate the relative roles of different BSC properties on the hydrologic response at the plot-scale. On-site meteorological, soil texture and vegetation property datasets are utilized as inputs into a ecohydrology model, modified to include local processes: (1) temperature-dependent precipitation partitioning, snow accumulation and melt, (2) seasonally-variable potential evapotranspiration, (3) plant species-specific transpiration factors, and (4) a new module to account for the water balance of the BSC. Soil, BSC and vegetation parameters were determined from field measurements or through model calibration to the soil moisture observations using the Shuffled Complex Evolution algorithm. Model performance is assessed against five years of soil moisture measurements at each experimental site, representing a wide range of crust cover properties. Simulation experiments were then carried out using the calibrated ecohydrology model in which BSC parameters were varied according to the level of development of the BSC, as represented by the BSC roughness. These results indicate that BSCs act to both buffer against evaporative soil moisture losses by enhancing BSC moisture evaporation and significantly alter the rates of soil water infiltration by reducing moisture storage and increasing conductivity in the BSC. The simulation results for soil water infiltration, storage and retention across a wide range of meteorological events help explain the conflicting hydrologic outcomes present in the literature on BSCs. In addition, identifying how BSCs mediate infiltration and evaporation processes has implications for dryland ecosystem function in the western United States.
ContributorsWhitney, Kristen M (Author) / Vivoni, Enrique R (Thesis advisor) / Farmer, Jack D (Committee member) / Garcia-Pichel, Ferran (Committee member) / Arizona State University (Publisher)
Created2015
168533-Thumbnail Image.png
Description
Predatory bacteria are a guild of heterotrophs that feed directly on other living bacteria. They belong to several bacterial lineages that evolved this mode of life independently and occur in many microbiomes and environments. Current knowledge of predatory bacteria is based on culture studies and simple detection in natural systems.

Predatory bacteria are a guild of heterotrophs that feed directly on other living bacteria. They belong to several bacterial lineages that evolved this mode of life independently and occur in many microbiomes and environments. Current knowledge of predatory bacteria is based on culture studies and simple detection in natural systems. The ecological consequences of their activity, unlike those of other populational loss factors like viral infection or grazing by protists, are yet to be assessed. During large-scale cultivation of biological soil crusts intended for arid soil rehabilitation, episodes of catastrophic failure were observed in cyanobacterial growth that could be ascribed to the action of an unknown predatory bacterium using bioassays. This predatory bacterium was also present in natural biocrust communities, where it formed clearings (plaques) up to 9 cm in diameter that were visible to the naked eye. Enrichment cultivation and purification by cell-sorting were used to obtain co-cultures of the predator with its cyanobacterial prey, as well as to identify and characterize it genomically, physiologically and ultrastructurally. A Bacteroidetes bacterium, unrelated to any known isolate at the family level, it is endobiotic, non-motile, obligately predatory, displays a complex life cycle and very unusual ultrastructure. Extracellular propagules are small (0.8-1.0 µm) Gram-negative cocci with internal two-membrane-bound compartmentalization. These gain entry to the prey likely using a suite of hydrolytic enzymes, localizing to the cyanobacterial cytoplasm, where growth begins into non-compartmentalized pseudofilaments that undergo secretion of vesicles and simultaneous multiple division to yield new propagules. I formally describe it as Candidatus Cyanoraptor togatus, hereafter Cyanoraptor. Its prey range is restricted to biocrust-forming, filamentous, non-heterocystous, gliding, bundle-making cyanobacteria. Molecular meta-analyses showed its worldwide distribution in biocrusts. Biogeochemical analyses of Cyanoraptor plaques revealed that it causes a complete loss of primary productivity, and significant decreases in other biocrusts properties such as water-retention and dust-trapping capacity. Extensive field surveys in the US Southwest revealed its ubiquity and its dispersal-limited, aggregated spatial distribution and incidence. Overall, its activity reduces biocrust productivity by 10% at the ecosystem scale. My research points to predatory bacteria as a significant, but overlooked, ecological force in shaping soil microbiomes.
ContributorsBethany Rakes, Julie Ann (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Gile, Gillian (Committee member) / Cao, Huansheng (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2022
158570-Thumbnail Image.png
Description
Decay of plant litter represents an enormous pathway for carbon (C) into the atmosphere but our understanding of the mechanisms driving this process is particularly limited in drylands. While microbes are a dominant driver of litter decay in most ecosystems, their significance in drylands is not well understood and abiotic

Decay of plant litter represents an enormous pathway for carbon (C) into the atmosphere but our understanding of the mechanisms driving this process is particularly limited in drylands. While microbes are a dominant driver of litter decay in most ecosystems, their significance in drylands is not well understood and abiotic drivers such as photodegradation are commonly perceived to be more important. I assessed the significance of microbes to the decay of plant litter in the Sonoran Desert. I found that the variation in decay among 16 leaf litter types was correlated with microbial respiration rates (i.e. CO2 emission) from litter, and rates were strongly correlated with water-vapor sorption rates of litter. Water-vapor sorption during high-humidity periods activates microbes and subsequent respiration appears to be a significant decay mechanism. I also found that exposure to sunlight accelerated litter decay (i.e. photodegradation) and enhanced subsequent respiration rates of litter. The abundance of bacteria (but not fungi) on the surface of litter exposed to sunlight was strongly correlated with respiration rates, as well as litter decay, implying that exposure to sunlight facilitated activity of surface bacteria which were responsible for faster decay. I also assessed the response of respiration to temperature and moisture content (MC) of litter, as well as the relationship between relative humidity and MC. There was a peak in respiration rates between 35-40oC, and, unexpectedly, rates increased from 55 to 70oC with the highest peak at 70oC, suggesting the presence of thermophilic microbes or heat-tolerant enzymes. Respiration rates increased exponentially with MC, and MC was strongly correlated with relative humidity. I used these relationships, along with litter microclimate and C loss data to estimate the contribution of this pathway to litter C loss over 34 months. Respiration was responsible for 24% of the total C lost from litter – this represents a substantial pathway for C loss, over twice as large as the combination of thermal and photochemical abiotic emission. My findings elucidate two mechanisms that explain why microbial drivers were more significant than commonly assumed: activation of microbes via water-vapor sorption and high respiration rates at high temperatures.
ContributorsTomes, Alexander (Author) / Day, Thomas (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Ball, Becky (Committee member) / Hall, Sharon (Committee member) / Roberson, Robert (Committee member) / Arizona State University (Publisher)
Created2020