Matching Items (3)
Filtering by

Clear all filters

153151-Thumbnail Image.png
Description
Microalgae represent a potential sustainable alternative for the enhancement and protection of agricultural crops. The dry biomass and cellular extracts of Scenedesmus dimorphus were applied as a biofertilizer, a foliar spray, and a seed primer to evaluate seed germination, plant growth, and crop yield of Roma tomato plants. The dry

Microalgae represent a potential sustainable alternative for the enhancement and protection of agricultural crops. The dry biomass and cellular extracts of Scenedesmus dimorphus were applied as a biofertilizer, a foliar spray, and a seed primer to evaluate seed germination, plant growth, and crop yield of Roma tomato plants. The dry biomass was applied as a biofertilizer at 50 g and 100 g per plant, to evaluate its effects on plant development and crop yield. Biofertilizer treatments enhanced plant growth and led to greater crop (fruit) production. Timing of biofertilizer application proved to be of importance - earlier 50 g biofertilizer application resulted in greater plant growth. Scenedesmus dimorphus culture, growth medium, and different concentrations (1%, 5%, 10%, 25%, 50%, 75%, 100%) of aqueous cell extracts were used as seed primers to determine effects on germination. Seeds treated with Scenedesmus dimorphus culture and with extract concentrations higher than 50 % (0.75 g ml-1) triggered faster germination - 2 days earlier than the control group. Extract foliar sprays of 50 ml and 100 ml, were obtained and applied to tomato plants at various extract concentrations (10%, 25%, 50%, 75% and 100%). Plant height, flower development and number of branches were significantly enhanced with 50 % (7.5 g ml-1) extracts. Higher concentration sprays led to a decrease in growth. The extracts were further screened to assess potential antimicrobial activity against the bacterium Escherichia coli ATCC 25922, the fungi Candida albicans ATCC 90028 and Aspergillus brasiliensis ATCC 16404. No antimicrobial activity was observed from the microalga extracts on the selected microorganisms.
ContributorsGarcia-Gonzalez, Jesus (Author) / Sommerfeld, Milton (Thesis advisor) / Steele, Kelly (Committee member) / Henderson, Mark (Committee member) / Arizona State University (Publisher)
Created2014
134276-Thumbnail Image.png
Description
Abstract
Purpose—Use a framework of genetic knowledge to investigate the association between the genotypes of various genes with phenotypes, specifically the traits of elite athletes, in order to establish a personal opinion on their relevance to athletic performance.
Methods—Assemble and analyze selected published scientific studies on genotype and athletic performance

Abstract
Purpose—Use a framework of genetic knowledge to investigate the association between the genotypes of various genes with phenotypes, specifically the traits of elite athletes, in order to establish a personal opinion on their relevance to athletic performance.
Methods—Assemble and analyze selected published scientific studies on genotype and athletic performance and lastly to formulate a personal opinion on the value of genetic testing of athletes. ACTN3, ACE, MSTN, and apoE were the genes selected for analyses.
Results—Two genes, ACTN3 and ACE, showed a significant relationship of genotype to phenotypic traits related to athletic performance. ApoE did not demonstrate a phenotypic association with athletic performance, however it showed a correlation with injury susceptibility leading to traumatic brain injury (TBI). MSTN did not show a phenotypic association with athletic performance.
Conclusion—When considering the multifactorial nature of athletics, each sport must be investigated individually due to the different individual requirements. ACTN3 and ACE are the most widely studied genes, therefore, considerable data on their relevance to athletic performance was easily obtained and supported a relationship between genotype and athletic performance.
ContributorsMinto, Jordan Taylor- Lloyd (Author) / Steele, Kelly (Thesis director) / Penton, C. Ryan (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
187727-Thumbnail Image.png
Description
Genome-wide, single nucleotide polymorphisms (SNPs) and germination data were analyzed to better understand species delimitation and salt-tolerance within the legume genus Medicago. Molecular phylogenies revealed that the widely-used, genomic model line R108 and two deeply divergent accessions of Medicago truncatula are in fact more closely related to Medicago littoralis than

Genome-wide, single nucleotide polymorphisms (SNPs) and germination data were analyzed to better understand species delimitation and salt-tolerance within the legume genus Medicago. Molecular phylogenies revealed that the widely-used, genomic model line R108 and two deeply divergent accessions of Medicago truncatula are in fact more closely related to Medicago littoralis than to other accessions representing Medicago truncatula. This result was supported by germination data wherein the two accessions representing deeply divergent Medicago truncatula demonstrated salt-tolerance that was more similar to Medicago littoralis than to other accessions of Medicago truncatula. Molecular phylogenies revealed that two additional accessions representing deeply divergent Medicago truncatula appear to be more closely related to Medicago italica than to other accessions representing Medicago truncatula. The results of the present study elucidate complex evolutionary relationships and contribute to the present understanding of existing salt-tolerance within Medicago.
ContributorsHopkins, Andrew David (Author) / Wojciechowski, Martin (Thesis advisor) / Park, Yujin (Committee member) / Steele, Kelly (Committee member) / Arizona State University (Publisher)
Created2023