Matching Items (10)
Filtering by

Clear all filters

150864-Thumbnail Image.png
Description
Skeletal muscles arise from the myotome compartment of the somites that form during vertebrate embryonic development. Somites are transient structures serve as the anlagen for the axial skeleton, skeletal muscle, tendons, and dermis, as well as imposing the metameric patterning of the axial musculoskeletal system, peripheral nerves, and vasculature. Classic

Skeletal muscles arise from the myotome compartment of the somites that form during vertebrate embryonic development. Somites are transient structures serve as the anlagen for the axial skeleton, skeletal muscle, tendons, and dermis, as well as imposing the metameric patterning of the axial musculoskeletal system, peripheral nerves, and vasculature. Classic studies have described the role of Notch, Wnt, and FGF signaling pathways in controlling somite formation and muscle formation. However, little is known about the transformation of myotome compartments into identifiable post-natal muscle groups. Using a mouse model, I have undertaken an evaluation of morphological events, including hypertrophy and hyperplasia, related to the formation of several muscles positioned along the dorsal surface of the vertebrae and ribs. Lunatic fringe (Lfng) deficient embryos and neonates were also examined to further understand the role of the Notch pathway in these processes as it is a modulator of the Notch receptor and plays an important role in defining somite borders and anterior-posterior patterning in many vertebrates. Lunatic fringe deficient embryos showed defects in muscle fiber hyperplasia and hypertrophy in the iliocostalis and longissimus muscles of the erector spinae group. This novel data suggests an additional role for Lfng and the Notch signaling pathway in embryonic and fetal muscle development.
ContributorsDe Ruiter, Corinne (Author) / Rawls, J. Alan (Thesis advisor) / Wilson-Rawls, Jeanne (Committee member) / Kusumi, Kenro (Committee member) / Fisher, Rebecca E. (Committee member) / Arizona State University (Publisher)
Created2012
157106-Thumbnail Image.png
Description
In most diploid cells, autosomal genes are equally expressed from the paternal and maternal alleles resulting in biallelic expression. However, as an exception, there exists a small number of genes that show a pattern of monoallelic or biased-allele expression based on the allele’s parent-of-origin. This phenomenon is termed genomic imprinting

In most diploid cells, autosomal genes are equally expressed from the paternal and maternal alleles resulting in biallelic expression. However, as an exception, there exists a small number of genes that show a pattern of monoallelic or biased-allele expression based on the allele’s parent-of-origin. This phenomenon is termed genomic imprinting and is an evolutionary paradox. The best explanation for imprinting is David Haig's kinship theory, which hypothesizes that monoallelic gene expression is largely the result of evolutionary conflict between males and females over maternal involvement in their offspring. One previous RNAseq study has investigated the presence of parent-of-origin effects, or imprinting, in the parasitic jewel wasp Nasonia vitripennis (N. vitripennis) and its sister species Nasonia giraulti (N. giraulti) to test the predictions of kinship theory in a non-eusocial species for comparison to a eusocial one. In order to continue to tease apart the connection between social and eusocial Hymenoptera, this study proposed a similar RNAseq study that attempted to reproduce these results in unique samples of reciprocal F1 Nasonia hybrids. Building a pseudo N. giraulti reference genome, differences were observed when aligning RNAseq reads to a N. vitripennis reference genome compared to aligning reads to a pseudo N. giraulti reference. As well, no evidence for parent-of-origin or imprinting patterns in adult Nasonia were found. These results demonstrated a species-of-origin effect. Importantly, the study continued to build a repository of support with the aim to elucidate the mechanisms behind imprinting in an excellent epigenetic model species, as it can also help with understanding the phenomenon of imprinting in complex human diseases.
ContributorsUnderwood, Avery Elizabeth (Author) / Wilson, Melissa (Thesis advisor) / Buetow, Kenneth (Committee member) / Gile, Gillian (Committee member) / Arizona State University (Publisher)
Created2019
154806-Thumbnail Image.png
Description
The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the

The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the activities within them. Nestmate recognition is the process of distinguishing between nestmates and non-nestmates, and embodies the first line of defense for social insect colonies. In ants, nestmate recognition is widely thought to occur through olfactory cues found on the exterior surfaces of individuals. These cues, called cuticular hydrocarbons (CHCs), comprise the overwhelming majority of ant nestmate profiles and help maintain colony identity. In this dissertation, I investigate how nestmate recognition is influenced by evolutionary, ontogenetic, and environmental factors. First, I contributed to the sequencing and description of three ant genomes including the red harvester ant, Pogonomyrmex barbatus, presented in detail here. Next, I studied how variation in nestmate cues may be shaped through evolution by comparatively studying a family of genes involved in fatty acid and hydrocarbon biosynthesis, i.e., the acyl-CoA desaturases, across seven ant species in comparison with other social and solitary insects. Then, I tested how genetic, developmental, and social factors influence CHC profile variation in P. barbatus, through a three-part study. (1) I conducted a descriptive, correlative study of desaturase gene expression and CHC variation in P. barbatus workers and queens; (2) I explored how larger-scale genetic variation in the P. barbatus species complex influences CHC variation across two genetically isolated lineages (J1/J2 genetic caste determining lineages); and (3) I experimentally examined how CHC development is influenced by an individual’s social environment. In the final part of my work, I resolved discrepancies between previous findings of nestmate recognition behavior in P. barbatus by studying how factors of territorial experience, i.e., spatiotemporal relationships, affect aggressive behaviors among red harvester ant colonies. Through this research, I was able to identify promising methodological approaches and candidate genes, which both broadens our understanding of P. barbatus nestmate recognition systems and supports future functional genetic studies of CHCs in ants.
ContributorsCash, Elizabeth I (Author) / Gadau, Jürgen (Thesis advisor) / Liebig, Jürgen (Thesis advisor) / Fewell, Jennifer (Committee member) / Hölldobler, Berthold (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2016
155019-Thumbnail Image.png
Description
In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression which prevents deleterious side effects from having too much or too little expression of genes on sex chromsomes. The green anole is part of a group of species that recently underwent an adaptive radiation. The green anole has XX/XY sex determination, but the content of the X chromosome and its evolution have not been described. Given its status as a model species, better understanding the green anole genome could reveal insights into other species. Genomic analyses are crucial for a comprehensive picture of sex chromosome differentiation and dosage compensation, in addition to understanding speciation.

In order to address this, multiple comparative genomics and bioinformatics analyses were conducted to elucidate patterns of evolution in the green anole and across multiple anole species. Comparative genomics analyses were used to infer additional X-linked loci in the green anole, RNAseq data from male and female samples were anayzed to quantify patterns of sex-biased gene expression across the genome, and the extent of dosage compensation on the anole X chromosome was characterized, providing evidence that the sex chromosomes in the green anole are dosage compensated.

In addition, X-linked genes have a lower ratio of nonsynonymous to synonymous substitution rates than the autosomes when compared to other Anolis species, and pairwise rates of evolution in genes across the anole genome were analyzed. To conduct this analysis a new pipeline was created for filtering alignments and performing batch calculations for whole genome coding sequences. This pipeline has been made publicly available.
ContributorsRupp, Shawn Michael (Author) / Wilson Sayres, Melissa A (Thesis advisor) / Kusumi, Kenro (Committee member) / DeNardo, Dale (Committee member) / Arizona State University (Publisher)
Created2016
187692-Thumbnail Image.png
Description
Mycobacterium leprae, the causative agent of Hansen’s disease (leprosy), has plagued humans and other animal species for millennia and remains of concern to public health throughout the world today. Recent research into the expanded use of medical tissues preserved as formalin-fixed, paraffin-embedded samples (FFPE), opened the door for the study

Mycobacterium leprae, the causative agent of Hansen’s disease (leprosy), has plagued humans and other animal species for millennia and remains of concern to public health throughout the world today. Recent research into the expanded use of medical tissues preserved as formalin-fixed, paraffin-embedded samples (FFPE), opened the door for the study of M. leprae DNA from preserved skin samples. However, problems persist with damage to the DNA including fragmentation and cross linkage. This study evaluated two methods commonly used for the recovery of host DNA from FFPE samples for their efficacy in extracting pathogen DNA (hot alkaline lysis protocol and QIAGEN QIAamp FFPE DNA kit). Twenty FFPE skin samples collected from 1995-2015 from human subjects in the Pacific Islands suffering from M. leprae infection, each exhibiting a range of bacillary loads, were analyzed to determine which extraction method was most successful in terms of ability to consistently yield reliable, robust traces of M. leprae infection. This study further examined these samples to understand the phylogeny of leprosy in the region, where gaps in the evolutionary history of M. leprae persist. DNA recovery from paired samples was similar using either method. However, by extending the incubation time of post-paraffin removal sample lysis, both protocols were more likely to yield positive traces of M. leprae, with this enhancement being especially evident in paucibacillary samples with low bacterial presence. The qPCR assay findings suggest that the hot alkaline procedure is most likely to yield positive identification of infection in these traditionally challenging samples.
ContributorsKing, Felicia Clarice (Author) / Stone, Anne (Thesis advisor) / Wilson, Melissa (Committee member) / Buetow, Ken (Committee member) / Arizona State University (Publisher)
Created2023
171931-Thumbnail Image.png
Description
While only the sixth most common cancer globally, liver cancer is the third most deadly. Despite the importance of accurate diagnosis and effective treatment, standard diagnostic tests for most solid organ neoplasms are not required for the most common type of liver cancer, Hepatocellular Carcinoma (HCC). In addition, major discrepancies

While only the sixth most common cancer globally, liver cancer is the third most deadly. Despite the importance of accurate diagnosis and effective treatment, standard diagnostic tests for most solid organ neoplasms are not required for the most common type of liver cancer, Hepatocellular Carcinoma (HCC). In addition, major discrepancies in the practices currently in place limits the ability to develop more precise oncological treatment and prognosis. This study aimed to identify biomarkers, with potential to more accurately diagnose how far cancer has advanced within a patient and determine prognosis. It is the hope that pathways provided by this study form the basis for future research into more standardized practices and potential treatment based on specific affected biological processes. The PathOlogist tool was utilized to calculate activity metrics for 1,324 biological pathways in 374 The Cancer Genome Atlas (TCGA) hepatocellular carcinoma donors. Further statistical analysis was done on two datasets, formed to identify grade or stage at time of diagnosis for the activity levels calculated by PathOlogist. The datasets were evaluated individually. Based on the variance and normality of each pathway’s activity levels in the respective data sets analysis of variance, Tukey-Kramer, Kruskal-Wallis, and Mann-Whitney-Wilcox tests were performed, when appropriate, to determine any statistically significant differences in pathway activity levels. Pathways were identified in both stage and grade data analyses that show significant differences in activity levels across designation. While some overlap is seen, there was a significant number of pathways unique to either stage or grade. These pathways are known to affect the cell cycle, cellular transport, disease, immune system, and metabolism regulation. The biological pathways named by this research depict prospective biomarkers for progression of hepatocellular carcinoma per subdivision within both stage and grade. These findings may be instrumental to new methods of early and more accurate diagnosis. The distinct differences in identified pathways in grade and stage illustrate the need for these new methods to not only look at stage but also grade when determining prognosis. Furthermore, the pathways identified herein have potential to aid in the development of targeted treatment based on the affected biological processes.
ContributorsGarrison, Alyssa Cameron (Author) / Buetow, Kenneth (Thesis advisor) / Hinde, Katie (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2022
158849-Thumbnail Image.png
Description
Next-generation sequencing is a powerful tool for detecting genetic variation. How-ever, it is also error-prone, with error rates that are much larger than mutation rates.
This can make mutation detection difficult; and while increasing sequencing depth
can often help, sequence-specific errors and other non-random biases cannot be de-
tected by increased depth. The

Next-generation sequencing is a powerful tool for detecting genetic variation. How-ever, it is also error-prone, with error rates that are much larger than mutation rates.
This can make mutation detection difficult; and while increasing sequencing depth
can often help, sequence-specific errors and other non-random biases cannot be de-
tected by increased depth. The problem of accurate genotyping is exacerbated when
there is not a reference genome or other auxiliary information available.
I explore several methods for sensitively detecting mutations in non-model or-
ganisms using an example Eucalyptus melliodora individual. I use the structure of
the tree to find bounds on its somatic mutation rate and evaluate several algorithms
for variant calling. I find that conventional methods are suitable if the genome of a
close relative can be adapted to the study organism. However, with structured data,
a likelihood framework that is aware of this structure is more accurate. I use the
techniques developed here to evaluate a reference-free variant calling algorithm.
I also use this data to evaluate a k-mer based base quality score recalibrator
(KBBQ), a tool I developed to recalibrate base quality scores attached to sequencing
data. Base quality scores can help detect errors in sequencing reads, but are often
inaccurate. The most popular method for correcting this issue requires a known
set of variant sites, which is unavailable in most cases. I simulate data and show
that errors in this set of variant sites can cause calibration errors. I then show that
KBBQ accurately recalibrates base quality scores while requiring no reference or other
information and performs as well as other methods.
Finally, I use the Eucalyptus data to investigate the impact of quality score calibra-
tion on the quality of output variant calls and show that improved base quality score
calibration increases the sensitivity and reduces the false positive rate of a variant
calling algorithm.
ContributorsOrr, Adam James (Author) / Cartwright, Reed (Thesis advisor) / Wilson, Melissa (Committee member) / Kusumi, Kenro (Committee member) / Taylor, Jesse (Committee member) / Pfeifer, Susanne (Committee member) / Arizona State University (Publisher)
Created2020
158493-Thumbnail Image.png
Description
Satellite cells are adult muscle stem cells that activate, proliferate, and differentiate into myofibers upon muscle damage. Satellite cells can be cultured and manipulated in vitro, and thus represent an accessible model for studying skeletal muscle biology, and a potential source of autologous stem cells for regenerative medicine. This work

Satellite cells are adult muscle stem cells that activate, proliferate, and differentiate into myofibers upon muscle damage. Satellite cells can be cultured and manipulated in vitro, and thus represent an accessible model for studying skeletal muscle biology, and a potential source of autologous stem cells for regenerative medicine. This work summarizes efforts to further understanding of satellite cell biology, using novel model organisms, bioengineering, and molecular and cellular approaches. Lizards are evolutionarily the closest vertebrates to humans that regenerate entire appendages. An analysis of lizard myoprogenitor cell transcriptome determined they were most transcriptionally similar to mammalian satellite cells. Further examination showed that among genes with the highest level of expression in lizard satellite cells were an increased number of regulators of chondrogenesis. In micromass culture, lizard satellite cells formed nodules that expressed chondrogenic regulatory genes, thus demonstrating increased musculoskeletal plasticity. However, to exploit satellite cells for therapeutics, development of an ex vivo culture is necessary. This work investigates whether substrates composed of extracellular matrix (ECM) proteins, as either coatings or hydrogels, can support expansion of this population whilst maintaining their myogenic potency. Stiffer substrates are necessary for in vitro proliferation and differentiation of satellite cells, while the ECM composition was not significantly important. Additionally, satellite cells on hydrogels entered a quiescent state that could be reversed when the cells were subsequently cultured on Matrigel. Proliferation and gene expression data further indicated that C2C12 cells are not a good proxy for satellite cells. To further understand how different signaling pathways control satellite cell behavior, an investigation of the Notch inhibitor protein Numb was carried out. Numb deficient satellite cells fail to activate, proliferate and participate in muscle repair. Examination of Numb isoform expression in satellite cells and embryonic tissues revealed that while developing limb bud, neural tube, and heart express the long and short isoforms of NUMB, satellite cells predominantly express the short isoforms. A preliminary immunoprecipitation- proteomics experiment suggested that the roles of NUMB in satellite cells are related to cell cycle modulation, cytoskeleton dynamics, and regulation of transcription factors necessary for satellite cell function.
ContributorsPalade, Joanna (Author) / Wilson-Rawls, Norma (Thesis advisor) / Rawls, Jeffrey (Committee member) / Kusumi, Kenro (Committee member) / Newbern, Jason (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2020
161529-Thumbnail Image.png
Description
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide and exhibits a male-bias in occurrence and mortality. Previous studies have provided insight into the role of inherited genetic regulation of transcription in modulating sex-differences in HCC etiology and mortality. This study uses pathway analysis to add insight

Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide and exhibits a male-bias in occurrence and mortality. Previous studies have provided insight into the role of inherited genetic regulation of transcription in modulating sex-differences in HCC etiology and mortality. This study uses pathway analysis to add insight into the biological processes that drive sex-differences in HCC etiology as well as a provide additional framework for future studies on sex-biased cancers. Gene expression data from normal, tumor adjacent, and HCC liver tissue were used to calculate pathway scores using a tool called PathOlogist that not only takes into consideration the molecules in a biological pathway, but also the interaction type and directionality of the signaling pathways. Analysis of the pathway scores uncovered etiologically relevant pathways differentiating male and female HCC. In normal and tumor adjacent liver tissue, males showed higher activity of pathways related to translation factors and signaling. Females did not show higher activity of any pathways compared to males in normal and tumor adjacent liver tissue. Work suggest biologic processes that underlie sex-biases in HCC occurrence and mortality. Both males and females differed in the activation of pathways related apoptosis, cell cycle, signaling, and metabolism in HCC. These results identify clinically relevant pathways for future research and therapeutic targeting.
ContributorsRehling, Thomas E (Author) / Buetow, Kenneth (Thesis advisor) / Wilson, Melissa (Committee member) / Maley, Carlo (Committee member) / Arizona State University (Publisher)
Created2021
187668-Thumbnail Image.png
Description

Structural Equation Modeling (SEM) is a multivariate analysis methodology that could potentially be utilized to examine the barrier effect that river systems have on genetic differentiation. In this project, river systems are split into the variables of Daily Average Discharge, Average River Width, and Seasonality measurements and regressed onto the

Structural Equation Modeling (SEM) is a multivariate analysis methodology that could potentially be utilized to examine the barrier effect that river systems have on genetic differentiation. In this project, river systems are split into the variables of Daily Average Discharge, Average River Width, and Seasonality measurements and regressed onto the genetic differentiation, measured as Fst. This data was collected from the USGS database (U.S. Geological Survey, 2020), sequencing files from differing literature, or Google Earth measurements. Different Structural Equation Modeling models are used to model different system structures as well as compare it to more traditional methodologies like Generalized Linear Modeling and Generalized Linear Mixed Modeling. Ultimately results were limited by the small sample size, however, interesting patterns still emerged from the models. The SE models indicate that Discharge plays a primary role in the genetic differentiation of adjacent river populations. In addition to this, the results demonstrate how quantification of indirect effects, particularly those relating to discharge, give more informative interpretations than traditional multivariate statistics alone. These findings prompt further investigations into this potential methodology.

ContributorsMaag, Garett (Author) / Dolby, Greer A. (Thesis advisor) / Kusumi, Kenro (Thesis advisor) / Stokes, Maya F. (Committee member) / Barly, Anthony (Committee member) / Arizona State University (Publisher)
Created2023