Matching Items (14)

Filtering by

Clear all filters

137397-Thumbnail Image.png
Description

This case study analyzed the internal controls of a real estate company using the widely accepted COSO framework. Testing of the internal environment and controls was completed using the COSO framework. The major internal control problem identified in the study was a lack of ethical standards in the control environment.

This case study analyzed the internal controls of a real estate company using the widely accepted COSO framework. Testing of the internal environment and controls was completed using the COSO framework. The major internal control problem identified in the study was a lack of ethical standards in the control environment. In addition to this main problem, inadequate documentation, no separation of duties, and unqualified employees were also identified as violations of effective internal controls. The department of real estate ordered a "cease and desist" on August 8, 2013 due to illegal company activities. The company participated in illegal actions regarding: the trust account and company documentation and procedures. Material weaknesses were found in the company's internal controls; therefore the result of this study was an adverse opinion on internal controls.

ContributorsFrederick, Nicole Lorraine (Author) / Munshi, Perseus (Thesis director) / Benali, Kayla (Committee member) / Barrett, The Honors College (Contributor) / School of Accountancy (Contributor) / Department of Psychology (Contributor)
Created2013-12
135433-Thumbnail Image.png
Description

For our collaborative thesis we explored the US electric utility market and how the Internet of Things technology movement could capture a possible advancement of the current existing grid. Our objective of this project was to successfully understand the market trends in the utility space and identify where a semiconductor

For our collaborative thesis we explored the US electric utility market and how the Internet of Things technology movement could capture a possible advancement of the current existing grid. Our objective of this project was to successfully understand the market trends in the utility space and identify where a semiconductor manufacturing company, with a focus on IoT technology, could penetrate the market using their products. The methodology used for our research was to conduct industry interviews to formulate common trends in the utility and industrial hardware manufacturer industries. From there, we composed various strategies that The Company should explore. These strategies were backed up using qualitative reasoning and forecasted discounted cash flow and net present value analysis. We confirmed that The Company should use specific silicon microprocessors and microcontrollers that pertained to each of the four devices analytics demand. Along with a silicon strategy, our group believes that there is a strong argument for a data analytics software package by forming strategic partnerships in this space.

ContributorsLlazani, Loris (Co-author) / Ruland, Matthew (Co-author) / Medl, Jordan (Co-author) / Crowe, David (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Department of Economics (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Hugh Downs School of Human Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135497-Thumbnail Image.png
Description

Twitter is one of the most powerful communication tools ever created. There are over 1.3 billion registered Twitter users (Smith, 2016). 100 million daily people actively use Twitter every day. 6,000 tweets are tweeted every second. Communication has never been so abundant, public, and chronicled. Not only is there a

Twitter is one of the most powerful communication tools ever created. There are over 1.3 billion registered Twitter users (Smith, 2016). 100 million daily people actively use Twitter every day. 6,000 tweets are tweeted every second. Communication has never been so abundant, public, and chronicled. Not only is there a gigantic population to market to, but also a wealth of information about that population to record and draw insights from. However, many companies' Twitter accounts fail to generate popular posts on a regular basis. The content that they produce is ineffective and uninteresting. In my opinion, these companies are failing to take advantage of a huge opportunity. I decided to dive into the Twitter accounts of some of my favorite companies to see what they were doing wrong and how they could improve. My thesis investigates 18 different company Twitter accounts from four different industries: Athletic Apparel, Technology, Online Entertainment, and Car Manufacturing. I pulled 200 tweets from each company and cleaned and organized the data into an Excel spreadsheet. I investigated how certain variables impacted tweet popularity across the four industries. First, I looked at tweet format to determine whether posts, retweets, or replies were the best format. Then, I analyzed how different elements of a tweet's content could impact the tweet's popularity. Specifically, I looked at the effects of including links, hashtags, and questions into the tweet. Next, I tried to determine the optimal tweet length for each industry. And finally, I compared each industry's tweet sentiment preferences. I then summarized my findings into a series of recommendations for companies to improve their tweet popularity.

ContributorsFrame, Christopher James (Author) / Clark, Joseph (Thesis director) / Jenkins, Anthony (Committee member) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135606-Thumbnail Image.png
Description

League of Legends is a Multiplayer Online Battle Arena (MOBA) game. MOBA games are generally formatted where two teams of five, each player controlling a character (champion), will try to take each other's base as quickly as possible. Currently, with about 70 million, League of Legends is number one in

League of Legends is a Multiplayer Online Battle Arena (MOBA) game. MOBA games are generally formatted where two teams of five, each player controlling a character (champion), will try to take each other's base as quickly as possible. Currently, with about 70 million, League of Legends is number one in the digital entertainment industry with $1.63 billion dollars of revenue in year 2015. This research analysis scopes in on the niche of the "Jungler" role between different tiers of player in League of Legends. I uncovered differences in player strategy that may explain the achievement of high rank using data aggregation through Riot Games' API, data slicing with time-sensitive data, random sampling, clustering by tiers, graphical techniques to display the cluster, distribution analysis and finally, a comprehensive factor analysis on the data's implications.

ContributorsPoon, Alex (Author) / Clark, Joseph (Thesis director) / Simon, Alan (Committee member) / Department of Information Systems (Contributor) / Department of Management (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

Sports analytics refers to the implementation of data science and analytics techniques within the sports industry. Several sports analysts and team managers have utilized analytical tools to boost overall team and player performance, often through the analysis of historical data. One of the most common techniques employed in sports analytics

Sports analytics refers to the implementation of data science and analytics techniques within the sports industry. Several sports analysts and team managers have utilized analytical tools to boost overall team and player performance, often through the analysis of historical data. One of the most common techniques employed in sports analytics is that of data mining–the extensive practice of analyzing data in order to extract and deliver insights and findings. Data mining projects are frequently guided with the six-step Cross Industry Standard Process for Data Mining (CRISP-DM) framework. One such sport that has extensively used data science and analytics, and data mining specifically, is that of Formula One (F1). Given the sports’ reliance on technology, race engineers working for F1 constructors often develop statistical models analyzing historical race performance to derive insight of drivers’ success. For the purposes of this project, the perspective of a race engineer working for the F1 constructor McLaren was considered. As the constructor is seeking to gain a competitive advantage for the upcoming F1 season, race performance data concerning previous seasons was collected and analyzed as part of a larger data mining project utilizing the CRISP-DM framework. Statistical models, such as linear regression and random forest, were developed to predict the number of points scored by McLaren racers and the variables most strongly contributed to such scored points. The final results point to specific lap times having to be aimed for as the most important variable in determining the number of points gained, although specific locations also seem prone to McLaren race success. These results in turn will be utilized to develop race strategies for the upcoming season to ensure McLaren has high efficiency against its competitors.

ContributorsImam, Amir (Author) / Simon, Alan (Thesis director) / Sha, Xiqing (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2023-05
Description

The COVID-19 pandemic’s unprecedented nature caused significant disruptions in the global supply chain industry, resulting in setbacks for supply chain operations. The repercussions of the supply chain challenges impacted various industries. This thesis seeks to investigate the impact of the COVID-19 pandemic on the supply chain industry, with a focus

The COVID-19 pandemic’s unprecedented nature caused significant disruptions in the global supply chain industry, resulting in setbacks for supply chain operations. The repercussions of the supply chain challenges impacted various industries. This thesis seeks to investigate the impact of the COVID-19 pandemic on the supply chain industry, with a focus on how disruptions have affected the efficiency and resilience of companies within this sector. Data analytics will be leveraged to analyze these disruptions and improve supply chain operations.

ContributorsPatwardhan, Sampada (Author) / Sirugudi, Kumar (Thesis director) / Sopha, Matthew (Committee member) / Barrett, The Honors College (Contributor) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor)
Created2023-05
164507-Thumbnail Image.png
Description

Basketball has evolved and is continuing to evolve in parallel with media and communication. The 21st century bears witness to the digitization of basketball, media, and communication with the advent of social media. Arguably the most esteemed professional basketball league in the world, the National Basketball Association (NBA) observes fans

Basketball has evolved and is continuing to evolve in parallel with media and communication. The 21st century bears witness to the digitization of basketball, media, and communication with the advent of social media. Arguably the most esteemed professional basketball league in the world, the National Basketball Association (NBA) observes fans and players alike conversing about the game through social media platforms available across the world. One of the most popular platforms, Twitter, enables anyone with a computer to write a textual post known as a “tweet” that can be made viewable to the public. The Twitter landscape holds a trove of data and information including “sentiment” for NBA teams to analyze with the goal of improving the success of their team from a managerial perspective. Two aspects this paper will examine are fan engagement and revenue generation from the perspective of several franchises in the NBA. The purpose of this research is to explore and discover if key measures of performance including both the number of points scored in a game and the game outcome either being a win or a loss, and the location of a game being won either at home or away on the road influence fan Twitter sentiment and if there is a correlation between fan Twitter sentiment and game attendance. The statistical computing tool RStudio in combination with data compiled from online databases and websites including Basketball Reference, Wikipedia, ESPN, and Statista are employed to execute two t-tests, two analysis of variance (ANOVA) tests, and one correlation test. The results indicate there is a significant difference in fan Twitter sentiment between high-scoring games and low-scoring games, between game wins and losses, among games being won at home versus away on the road, and there is no conclusion that can be made regarding any existing correlation between fan Twitter sentiment and game attendance.

ContributorsKwan, Matthew (Author) / McIntosh, Daniel (Thesis director) / Eaton, John (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Information Systems (Contributor)
Created2022-05
133441-Thumbnail Image.png
Description

Cognitive technology has been at the forefront of the minds of many technology, government, and business leaders, because of its potential to completely revolutionize their fields. Furthermore, individuals in financial statement auditor roles are especially focused on the impact of cognitive technology because of its potential to eliminate many of

Cognitive technology has been at the forefront of the minds of many technology, government, and business leaders, because of its potential to completely revolutionize their fields. Furthermore, individuals in financial statement auditor roles are especially focused on the impact of cognitive technology because of its potential to eliminate many of the tedious, repetitive tasks involved in their profession. Adopting new technologies that can autonomously collect more data from a broader range of sources, turn the data into business intelligence, and even make decisions based on that data begs the question of whether human roles in accounting will be completely replaced. A partial answer: If the ramifications of past technological advances are any indicator, cognitive technology will replace some human audit operations and grow some new and higher order roles for humans. It will shift the focus of accounting professionals to more complex judgment and analysis.
The next question: What do these changes in the roles and responsibilities look like for the auditors of the future? Cognitive technology will assuredly present new issues for which humans will have to find solutions.
• How will humans be able to test the accuracy and completeness of the decisions derived by cognitive systems?
• If cognitive computing systems rely on supervised learning, what is the most effective way to train systems?
• How will cognitive computing fair in an industry that experiences ever-changing industry regulations?
• Will cognitive technology enhance the quality of audits?
In order to answer these questions and many more, I plan on examining how cognitive technologies evolved into their use today. Based on this historic trajectory, stakeholder interviews, and industry research, I will forecast what auditing jobs may look like in the near future taking into account rapid advances in cognitive computing.
The conclusions forecast a future in auditing that is much more accurate, timely, and pleasant. Cognitive technologies allow auditors to test entire populations of transactions, to tackle audit issues on a more continuous basis, to alleviate the overload of work that occurs after fiscal year-end, and to focus on client interaction.

ContributorsWitkop, David (Author) / Dawson, Gregory (Thesis director) / Munshi, Perseus (Committee member) / School of Accountancy (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132857-Thumbnail Image.png
Description

Predictive analytics have been used in a wide variety of settings, including healthcare,
sports, banking, and other disciplines. We use predictive analytics and modeling to
determine the impact of certain factors that increase the probability of a successful
fourth down conversion in the Power 5 conferences. The

Predictive analytics have been used in a wide variety of settings, including healthcare,
sports, banking, and other disciplines. We use predictive analytics and modeling to
determine the impact of certain factors that increase the probability of a successful
fourth down conversion in the Power 5 conferences. The logistic regression models
predict the likelihood of going for fourth down with a 64% or more probability based on
2015-17 data obtained from ESPN’s college football API. Offense type though important
but non-measurable was incorporated as a random effect. We found that distance to go,
play type, field position, and week of the season were key leading covariates in
predictability. On average, our model performed as much as 14% better than coaches
in 2018.

ContributorsBlinkoff, Joshua Ian (Co-author) / Voeller, Michael (Co-author) / Wilson, Jeffrey (Thesis director) / Graham, Scottie (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Information Systems (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132858-Thumbnail Image.png
Description

Predictive analytics have been used in a wide variety of settings, including healthcare, sports, banking, and other disciplines. We use predictive analytics and modeling to determine the impact of certain factors that increase the probability of a successful fourth down conversion in the Power 5 conferences. The logistic regression models

Predictive analytics have been used in a wide variety of settings, including healthcare, sports, banking, and other disciplines. We use predictive analytics and modeling to determine the impact of certain factors that increase the probability of a successful fourth down conversion in the Power 5 conferences. The logistic regression models predict the likelihood of going for fourth down with a 64% or more probability based on 2015-17 data obtained from ESPN’s college football API. Offense type though important but non-measurable was incorporated as a random effect. We found that distance to go, play type, field position, and week of the season were key leading covariates in predictability. On average, our model performed as much as 14% better than coaches in 2018.

ContributorsVoeller, Michael Jeffrey (Co-author) / Blinkoff, Josh (Co-author) / Wilson, Jeffrey (Thesis director) / Graham, Scottie (Committee member) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05