Matching Items (21)
Filtering by

Clear all filters

135433-Thumbnail Image.png
Description
For our collaborative thesis we explored the US electric utility market and how the Internet of Things technology movement could capture a possible advancement of the current existing grid. Our objective of this project was to successfully understand the market trends in the utility space and identify where a semiconductor

For our collaborative thesis we explored the US electric utility market and how the Internet of Things technology movement could capture a possible advancement of the current existing grid. Our objective of this project was to successfully understand the market trends in the utility space and identify where a semiconductor manufacturing company, with a focus on IoT technology, could penetrate the market using their products. The methodology used for our research was to conduct industry interviews to formulate common trends in the utility and industrial hardware manufacturer industries. From there, we composed various strategies that The Company should explore. These strategies were backed up using qualitative reasoning and forecasted discounted cash flow and net present value analysis. We confirmed that The Company should use specific silicon microprocessors and microcontrollers that pertained to each of the four devices analytics demand. Along with a silicon strategy, our group believes that there is a strong argument for a data analytics software package by forming strategic partnerships in this space.
ContributorsLlazani, Loris (Co-author) / Ruland, Matthew (Co-author) / Medl, Jordan (Co-author) / Crowe, David (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Department of Economics (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Hugh Downs School of Human Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133184-Thumbnail Image.png
Description
Cryptocurrencies are notorious for its volatility. But with its incredible rise in price, Bitcoin keep being on the top among the trending topics on social media. Although doubts continue to rise with price, Bloomberg even make critics on Bitcoin as ‘the biggest bubble in the history’, some investors still hold

Cryptocurrencies are notorious for its volatility. But with its incredible rise in price, Bitcoin keep being on the top among the trending topics on social media. Although doubts continue to rise with price, Bloomberg even make critics on Bitcoin as ‘the biggest bubble in the history’, some investors still hold strong enthusiasm and confidence towards Bitcoin. As contradicting opinions increase, it is worthy to dive into discussions on social media and use a scientific method to evaluate public’s non-negligible role in crypto price fluctuation.

Sentiment analysis, which is a notably method in text mining, can be used to extract the sentiment from people’s opinion. It then provides us with valuable perception on a topic from the public’s attitude, which create more opportunities for deeper analysis and prediction.

The thesis aims to investigate public’s sentiment towards Bitcoin through analyzing 10 million Bitcoin related tweets and assigning sentiment points on tweets, then using sentiment fluctuation as a factor to predict future crypto fluctuation. Price prediction is achieved by using a machine learning model called Recurrent Neural Network which automatically learns the pattern and generate following results with memory. The analysis revels slight connection between sentiment and crypto currency and the Neural Network model showed a strong connection between sentiment score and future price prediction.
ContributorsZhu, Xiaoyu (Author) / Benjamin, Victor (Thesis director) / Qinglai, He (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
137296-Thumbnail Image.png
Description
This thesis studies the area of sentiment analysis and its general uses, benefits, and limitations. Social networking, blogging, and online forums have turned the Web into a vast repository of comments on many topics. Sentiment analysis is the process of using software to analyze social media to gauge the attitudes

This thesis studies the area of sentiment analysis and its general uses, benefits, and limitations. Social networking, blogging, and online forums have turned the Web into a vast repository of comments on many topics. Sentiment analysis is the process of using software to analyze social media to gauge the attitudes or sentiments of the users/authors concerning a particular subject. Sentiment analysis works by processing (data mining) unstructured textual evidence using natural language processing and machine learning to determine a positive, negative, or neutral measurement. When utilized correctly, sentiment analysis has the potential to glean valuable insights into consumers' minds, which in turn leads to increased revenue and improved customer satisfaction for businesses. This paper looks at four industries in which sentiment analysis is being used or being considered: retail/services, politics, healthcare, and finances. The goal of the thesis will be to explore whether sentiment analysis has been used successfully for economic or social benefit and whether it is a practical solution for analyzing consumer opinion.
ContributorsSoumya, Saswati (Author) / Uday, Kulkarni (Thesis director) / Brooks, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Department of Economics (Contributor) / WPC Graduate Programs (Contributor) / Department of Information Systems (Contributor)
Created2014-05
132857-Thumbnail Image.png
Description
Predictive analytics have been used in a wide variety of settings, including healthcare,
sports, banking, and other disciplines. We use predictive analytics and modeling to
determine the impact of certain factors that increase the probability of a successful
fourth down conversion in the Power 5 conferences. The logistic regression models

Predictive analytics have been used in a wide variety of settings, including healthcare,
sports, banking, and other disciplines. We use predictive analytics and modeling to
determine the impact of certain factors that increase the probability of a successful
fourth down conversion in the Power 5 conferences. The logistic regression models
predict the likelihood of going for fourth down with a 64% or more probability based on
2015-17 data obtained from ESPN’s college football API. Offense type though important
but non-measurable was incorporated as a random effect. We found that distance to go,
play type, field position, and week of the season were key leading covariates in
predictability. On average, our model performed as much as 14% better than coaches
in 2018.
ContributorsBlinkoff, Joshua Ian (Co-author) / Voeller, Michael (Co-author) / Wilson, Jeffrey (Thesis director) / Graham, Scottie (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Information Systems (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132858-Thumbnail Image.png
Description
Predictive analytics have been used in a wide variety of settings, including healthcare, sports, banking, and other disciplines. We use predictive analytics and modeling to determine the impact of certain factors that increase the probability of a successful fourth down conversion in the Power 5 conferences. The logistic regression models

Predictive analytics have been used in a wide variety of settings, including healthcare, sports, banking, and other disciplines. We use predictive analytics and modeling to determine the impact of certain factors that increase the probability of a successful fourth down conversion in the Power 5 conferences. The logistic regression models predict the likelihood of going for fourth down with a 64% or more probability based on 2015-17 data obtained from ESPN’s college football API. Offense type though important but non-measurable was incorporated as a random effect. We found that distance to go, play type, field position, and week of the season were key leading covariates in predictability. On average, our model performed as much as 14% better than coaches in 2018.
ContributorsVoeller, Michael Jeffrey (Co-author) / Blinkoff, Josh (Co-author) / Wilson, Jeffrey (Thesis director) / Graham, Scottie (Committee member) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132867-Thumbnail Image.png
Description
The objective of this project was the creation of a web app for undergraduate CIS/BDA students which allows them to search for jobs based on criteria that are not always directly available with the average job search engine. This includes technical skills, soft skills, location and industry. This

The objective of this project was the creation of a web app for undergraduate CIS/BDA students which allows them to search for jobs based on criteria that are not always directly available with the average job search engine. This includes technical skills, soft skills, location and industry. This creates a more focused way for these students to search for jobs using an application that also attempts to exclude positions that are looking for very experienced employees. The activities used for this project were chosen in attempt to make as many of the processes as automatable as possible.
This was achieved by first using offline explorer, an application that can download websites, to gather job postings from Dice.com that were searched by a pre-defined list of technical skills. Next came the parsing of the downloaded postings to extract and clean the data that was required and filling a database with that cleaned data. Then the companies were matched up with their corresponding industries. This was done using their NAICS (North American Industry Classification System) codes. The descriptions were then analyzed, and a group of soft skills was chosen based on the results of Word2Vec (a group of models that assists in creating word embeddings). A master table was then created by combining all of the tables in the database. The master table was then filtered down to exclude posts that required too much experience. Lastly, the web app was created using node.js as the back-end. This web app allows the user to choose their desired criteria and navigate through the postings that meet their criteria.
ContributorsHenry, Alfred (Author) / Darcy, David (Thesis director) / Moser, Kathleen (Committee member) / Department of Information Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
This paper explores the ability to predict yields of soybeans based on genetics and environmental factors. Based on the biology of soybeans, it has been shown that yields are best when soybeans grow within a certain temperature range. The event a soybean is exposed to temperature outside their accepted range

This paper explores the ability to predict yields of soybeans based on genetics and environmental factors. Based on the biology of soybeans, it has been shown that yields are best when soybeans grow within a certain temperature range. The event a soybean is exposed to temperature outside their accepted range is labeled as an instance of stress. Currently, there are few models that use genetic information to predict how crops may respond to stress. Using data provided by an agricultural business, a model was developed that can categorically label soybean varieties by their yield response to stress using genetic data. The model clusters varieties based on their yield production in response to stress. The clustering criteria is based on variance distribution and correlation. A logistic regression is then fitted to identify significant gene markers in varieties with minimal yield variance. Such characteristics provide a probabilistic outlook of how certain varieties will perform when planted in different regions. Given changing global climate conditions, this model demonstrates the potential of using data to efficiently develop and grow crops adjusted to climate changes.
ContributorsDean, Arlen (Co-author) / Ozcan, Ozkan (Co-author) / Travis, Daniel (Co-author) / Gel, Esma (Thesis director) / Armbruster, Dieter (Committee member) / Parry, Sam (Committee member) / Industrial, Systems and Operations Engineering Program (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133011-Thumbnail Image.png
Description
Only an Executive Summary of the project is included.
The goal of this project is to develop a deeper understanding of how machine learning pertains to the business world and how business professionals can capitalize on its capabilities. It explores the end-to-end process of integrating a machine and the tradeoffs

Only an Executive Summary of the project is included.
The goal of this project is to develop a deeper understanding of how machine learning pertains to the business world and how business professionals can capitalize on its capabilities. It explores the end-to-end process of integrating a machine and the tradeoffs and obstacles to consider. This topic is extremely pertinent today as the advent of big data increases and the use of machine learning and artificial intelligence is expanding across industries and functional roles. The approach I took was to expand on a project I championed as a Microsoft intern where I facilitated the integration of a forecasting machine learning model firsthand into the business. I supplement my findings from the experience with research on machine learning as a disruptive technology. This paper will not delve into the technical aspects of coding a machine model, but rather provide a holistic overview of developing the model from a business perspective. My findings show that, while the advantages of machine learning are large and widespread, a lack of visibility and transparency into the algorithms behind machine learning, the necessity for large amounts of data, and the overall complexity of creating accurate models are all tradeoffs to consider when deciding whether or not machine learning is suitable for a certain objective. The results of this paper are important in order to increase the understanding of any business professional on the capabilities and obstacles of integrating machine learning into their business operations.
ContributorsVerma, Ria (Author) / Goegan, Brian (Thesis director) / Moore, James (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134845-Thumbnail Image.png
Description
The purpose of this thesis was to develop a tool to provide information and data for design teams to use throughout the mobile application design process. Ideally, this would enable teams to see patterns in iterative design, and ultimately use data-driven analysis to make their own decisions. The initial problem

The purpose of this thesis was to develop a tool to provide information and data for design teams to use throughout the mobile application design process. Ideally, this would enable teams to see patterns in iterative design, and ultimately use data-driven analysis to make their own decisions. The initial problem was a lack of available information offered by mobile application design teams—the initial goal being to work closely with design teams to learn their decision-making methodology. However, every team that was reached out to responded with rejection, presenting a new problem: a lack of access to quality information regarding the decision-making process for mobile applications. This problem was addressed by the development of an ethical hacking script that retrieves reviews in bulk from the Google Play Store using Python. The project was a success—by feeding an application’s unique Play Store ID, the script retrieves a user-specified amount of reviews (up to millions) for that mobile application and the 4 “recommended” applications from the Play Store. Ultimately, this thesis proved that protected reviews on the Play Store can be ethically retrieved and used for data-driven decision making and identifying patterns in an application’s iterative design. This script provides an automated tool for teams to “put a finger on the pulse” of their target applications.
ContributorsDyer, Mitchell Patrick (Author) / Lin, Elva (Thesis director) / Giles, Charles (Committee member) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135497-Thumbnail Image.png
Description
Twitter is one of the most powerful communication tools ever created. There are over 1.3 billion registered Twitter users (Smith, 2016). 100 million daily people actively use Twitter every day. 6,000 tweets are tweeted every second. Communication has never been so abundant, public, and chronicled. Not only is there a

Twitter is one of the most powerful communication tools ever created. There are over 1.3 billion registered Twitter users (Smith, 2016). 100 million daily people actively use Twitter every day. 6,000 tweets are tweeted every second. Communication has never been so abundant, public, and chronicled. Not only is there a gigantic population to market to, but also a wealth of information about that population to record and draw insights from. However, many companies' Twitter accounts fail to generate popular posts on a regular basis. The content that they produce is ineffective and uninteresting. In my opinion, these companies are failing to take advantage of a huge opportunity. I decided to dive into the Twitter accounts of some of my favorite companies to see what they were doing wrong and how they could improve. My thesis investigates 18 different company Twitter accounts from four different industries: Athletic Apparel, Technology, Online Entertainment, and Car Manufacturing. I pulled 200 tweets from each company and cleaned and organized the data into an Excel spreadsheet. I investigated how certain variables impacted tweet popularity across the four industries. First, I looked at tweet format to determine whether posts, retweets, or replies were the best format. Then, I analyzed how different elements of a tweet's content could impact the tweet's popularity. Specifically, I looked at the effects of including links, hashtags, and questions into the tweet. Next, I tried to determine the optimal tweet length for each industry. And finally, I compared each industry's tweet sentiment preferences. I then summarized my findings into a series of recommendations for companies to improve their tweet popularity.
ContributorsFrame, Christopher James (Author) / Clark, Joseph (Thesis director) / Jenkins, Anthony (Committee member) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05