Matching Items (6)
Filtering by

Clear all filters

151340-Thumbnail Image.png
Description
Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell;

Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module's glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60 °C and 85 °C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity is disrupted at the inside boundary of the frame. The surface conductivity of the glass, due to water layer formation in a humid condition, close to the frame could be disrupted just by applying a water repelling (hydrophobic) but high transmittance surface coating (such as Teflon) or modifying the frame/glass edges with water repellent properties.
ContributorsTatapudi, Sai Ravi Vasista (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
133555-Thumbnail Image.png
Description
Bifacial photovoltaic modules are a relatively new development in the photovoltaic industry which allows for the collection and conversion of light on both sides of photovoltaic modules to usable electricity. Additional energy yield from bifacial photovoltaic modules, despite a slight increase in cost due to manufacturing processes of the bifacial

Bifacial photovoltaic modules are a relatively new development in the photovoltaic industry which allows for the collection and conversion of light on both sides of photovoltaic modules to usable electricity. Additional energy yield from bifacial photovoltaic modules, despite a slight increase in cost due to manufacturing processes of the bifacial cells, has the potential to significantly decrease the LCOE of photovoltaic installation. The performance of bifacial modules is dependent on three major factors: incident irradiation on the front side of the module, reflected irradiation on the back side of the module, and the module's bifaciality. Bifaciality is an inherent property of the photovoltaic cells and is determined by the performance of the front and rear side of the module when tested at STC. The reflected light on the back side of the module, however, is determined by several different factors including the incident ground irradiance, shading from the modules and racking system, height of the module installation, and ground albedo. Typical ground surfaces have a low albedo, which means that the magnitude of reflected light is a low percentage of the incident irradiance. Non-uniformity of back-side irradiance can also reduce the power generation due to cell-to-cell mismatch losses. This study investigates the use of controlled back-side reflectors to improve the irradiance on the back side of loosely packed 48-cell bifacial modules and compares this performance to the performance of 48 and 60-cell bifacial modules which rely on the uncontrolled reflection off nearby ground surfaces. Different construction geometries and reflective coating materials were tested to determine optimal construction to improve the reflectivity and uniformity of reflection. Results of this study show a significant improvement of 10-14% total energy production from modules with reflectors when compared to the 48-cell module with an uncontrolled ground reflection.
ContributorsBowersox, David Andrew (Author) / Tamizhmani, Govindasamy (Thesis director) / Srinivasan, Devarajan (Committee member) / School for Engineering of Matter, Transport and Energy (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137730-Thumbnail Image.png
Description
An investigation is undertaken of a prototype building-integrated solar photovoltaic-powered thermal storage system and air conditioning unit. The study verifies previous thermodynamic and economic conclusions and provides a more thorough analysis. A parameterized model was created for optimization of the system under various conditions. The model was used to evaluate

An investigation is undertaken of a prototype building-integrated solar photovoltaic-powered thermal storage system and air conditioning unit. The study verifies previous thermodynamic and economic conclusions and provides a more thorough analysis. A parameterized model was created for optimization of the system under various conditions. The model was used to evaluate energy and cost savings to determine viability of the system in several circumstances, such as a residence in Phoenix with typical cooling demand. The proposed design involves a modified chest freezer as a thermal storage tank with coils acting as the evaporator for the refrigeration cycle. Surrounding the coils, the tank contains small containers of water for high-density energy storage submerged in a low freezing-point solution of propylene glycol. The cooling power of excess photovoltaic and off-peak grid power that is generated by the air conditioning compressor is stored in the thermal storage tank by freezing the pure water. It is extracted by pumping the glycol across the ice containers and into an air handler to cool the building. Featured results of the modeling include the determination of an optimized system for a super-peak rate plan, grid-connected Phoenix house that has a 4-ton cooling load and requires a corresponding new air conditioner at 4.5 kW of power draw. Optimized for the highest payback over a ten year period, the system should consist of a thermal storage tank containing 454 liters (120 gallons) of water, a 3-ton rated air conditioning unit, requiring 2.7 kW, which is smaller than conventionally needed, and no solar photovoltaic array. The monthly summer savings would be $45.The upfront cost would be $5489, compared to a conventional system upfront cost of $5400, for a payback period of 0.33 years. Over ten years, this system will provide $2600 of savings. To optimize the system for the highest savings over a twenty year period, a thermal storage tank containing 272 liters (72 gallons) of water, a 40-m2 photovoltaic array with 15% efficiency, and a 3.5-ton, 3.1-kW rated air conditioning unit should be installed for an upfront cost of $19,900. This would provide monthly summer savings of $225 and 1062 kWh grid electricity, with a payback period of only 11 years and a total cost savings of $12,300 over twenty years. In comparison, a system with the same size photovoltaic array but without storage would result in a payback period of 16 years. Results are also determined for other cooling requirements and installation sizes, such that the viability of this type of system in different conditions can be discussed. The use of this model for determining the optimized system configuration given different constraints is also described.
ContributorsMagerman, Beth Francine (Author) / Phelan, Patrick (Thesis director) / Goodnick, Stephen (Committee member) / Chhetri, Nalini (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
131046-Thumbnail Image.png
Description
As Energy needs grow and photovoltaics expand to meet humanity’s demand for electricity, waste modules will start building up. Tao et. al. propose a recycling process to recover all precious solar cell materials, a process estimated to generate a potential $15 billion in revenue by 2050. A key part of

As Energy needs grow and photovoltaics expand to meet humanity’s demand for electricity, waste modules will start building up. Tao et. al. propose a recycling process to recover all precious solar cell materials, a process estimated to generate a potential $15 billion in revenue by 2050. A key part of this process is metal recovery, and specifically, silver recovery. Silver recovery via electrowinning was studied using a hydrofluoric acid leachate/electrolyte. Bulk electrolysis trials were performed at varied voltages using a silver working electrode, silver pseudo-reference electrode and a graphite counter-electrode. The highest mass recovery achieved was 98.8% which occurred at 0.65 volts. Product purity was below 90% for all trials and coulombic efficiency never reached above 20%. The average energy consumption per gram of reduced silver was 2.16kWh/kg. Bulk electrolysis indicates that parasitic reactions are drawing power from the potentiostat and limiting the mass recovery of the system. In order to develop this process to the practical use stage, parasitic reactions must be eliminated, and product purity and power efficiency must improve. The system should be run in a vacuum environment and the reduction peaks in the cell should be characterized using cyclic voltammetry.
ContributorsTezak, Cooper R (Author) / Tao, Meng (Thesis director) / Phelan, Patrick (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
158380-Thumbnail Image.png
Description
The operating temperature of photovoltaic (PV) modules has a strong impact on the expected performance of said modules in photovoltaic arrays. As the install capacity of PV arrays grows throughout the world, improved accuracy in modeling of the expected module temperature, particularly at finer time scales, requires improvements in the

The operating temperature of photovoltaic (PV) modules has a strong impact on the expected performance of said modules in photovoltaic arrays. As the install capacity of PV arrays grows throughout the world, improved accuracy in modeling of the expected module temperature, particularly at finer time scales, requires improvements in the existing photovoltaic temperature models. This thesis work details the investigation, motivation, development, validation, and implementation of a transient photovoltaic module temperature model based on a weighted moving-average of steady-state temperature predictions.

This thesis work first details the literature review of steady-state and transient models that are commonly used by PV investigators in performance modeling. Attempts to develop models capable of accounting for the inherent transient thermal behavior of PV modules are shown to improve on the accuracy of the steady-state models while also significantly increasing the computational complexity and the number of input parameters needed to perform the model calculations.

The transient thermal model development presented in this thesis begins with an investigation of module thermal behavior performed through finite-element analysis (FEA) in a computer-aided design (CAD) software package. This FEA was used to discover trends in transient thermal behavior for a representative PV module in a timely manner. The FEA simulations were based on heat transfer principles and were validated against steady-state temperature model predictions. The dynamic thermal behavior of PV modules was determined to be exponential, with the shape of the exponential being dependent on the wind speed and mass per unit area of the module.

The results and subsequent discussion provided in this thesis link the thermal behavior observed in the FEA simulations to existing steady-state temperature models in order to create an exponential weighting function. This function can perform a weighted average of steady-state temperature predictions within 20 minutes of the time in question to generate a module temperature prediction that accounts for the inherent thermal mass of the module while requiring only simple input parameters. Validation of the modeling method presented here shows performance modeling accuracy improvement of 0.58%, or 1.45°C, over performance models relying on steady-state models at narrow data intervals.
ContributorsPrilliman, Matthew (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020
187539-Thumbnail Image.png
Description
This study introduces a new outdoor accelerated testing method called “Field Accelerated Stress Testing (FAST)” for photovoltaic (PV) modules performed at two different climatic sites in Arizona (hot-dry) and Florida (hot-humid). FAST is a combined accelerated test methodology that simultaneously accounts for all the field-specific stresses and accelerates only key

This study introduces a new outdoor accelerated testing method called “Field Accelerated Stress Testing (FAST)” for photovoltaic (PV) modules performed at two different climatic sites in Arizona (hot-dry) and Florida (hot-humid). FAST is a combined accelerated test methodology that simultaneously accounts for all the field-specific stresses and accelerates only key stresses, such as temperature, to forecast the failure modes by 2- 7 times in advance depending on the activation energy of the degradation mechanism (i.e., 10th year reliability issues can potentially be predicted in the 2nd year itself for an acceleration factor of 5). In this outdoor combined accelerated stress study, the temperatures of test modules were increased (by 16-19℃ compared to control modules) using thermal insulations on the back of the modules. All other conditions (ambient temperature, humidity, natural sunlight, wind speed, wind direction, and tilt angle) were left constant for both test modules (with back thermal insulation) and control modules (without thermal insulation). In this study, a total of sixteen 4-cell modules with two different construction types (glass/glass [GG] and glass/backsheet [GB]) and two different encapsulant types (ethylene vinyl acetate [EVA] and polyolefin elastomer [POE]), were investigated at both sites with eight modules at each site (four insulated and four non-insulated modules at each site). All the modules were extensively characterized before installation in the field and after field exposure over two years. The methods used for characterizing the devices included I-V (current-voltage curves), EL (electroluminescence), UVF (ultraviolet fluorescence), and reflectance. The key findings of this study are: i) the GG modules tend to operate at a higher temperature (1-3℃) than the GB modules at both sites of Arizona and Florida (a lower lifetime is expected for GG modules compared to GB modules); ii) the GG modules tend to experience a higher level of encapsulant discoloration and grid finger degradation than the GB modules at both sites (a higher level of the degradation rate is expected in GG modules compared to GB modules); and, iii) the EVA-based modules tend to have a higher level of discoloration and finger degradation compared to the POE-based modules at both sites.
ContributorsThayumanavan, Rishi Gokul (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2023