Matching Items (3)
Filtering by

Clear all filters

155006-Thumbnail Image.png
Description
Potential-Induced Degradation (PID) is an extremely serious photovoltaic (PV) durability issue significantly observed in crystalline silicon PV modules due to its rapid power degradation, particularly when compared to other PV degradation modes. The focus of this dissertation is to understand PID mechanisms and to develop PID-free cells and modules. PID-affected

Potential-Induced Degradation (PID) is an extremely serious photovoltaic (PV) durability issue significantly observed in crystalline silicon PV modules due to its rapid power degradation, particularly when compared to other PV degradation modes. The focus of this dissertation is to understand PID mechanisms and to develop PID-free cells and modules. PID-affected modules have been claimed to be fully recovered by high temperature and reverse potential treatments. However, the results obtained in this work indicate that the near-full recovery of efficiency can be achieved only at high irradiance conditions, but the full recovery of efficiency at low irradiance levels, of shunt resistance, and of quantum efficiency (QE) at short wavelengths could not be achieved. The QE loss observed at short wavelengths was modeled by changing the front surface recombination velocity. The QE scaling error due to a measurement on a PID shunted cell was addressed by developing a very low input impedance accessory applicable to an existing QE system. The impacts of silicon nitride (SiNx) anti-reflection coating (ARC) refractive index (RI) and emitter sheet resistance on PID are presented. Low RI ARC cells (1.87) were observed to be PID-susceptible whereas high RI ARC cells (2.05) were determined to be PID-resistant using a method employing high dose corona charging followed by time-resolved measurement of surface voltage. It has been demonstrated that the PID could be prevented by deploying an emitter having a low sheet resistance (~ 60 /sq) even if a PID-susceptible ARC is used in a cell. Secondary ion mass spectroscopy (SIMS) results suggest that a high phosphorous emitter layer hinders sodium transport, which is responsible for the PID. Cells can be screened for PID susceptibility by illuminated lock-in thermography (ILIT) during the cell fabrication process, and the sample structure for this can advantageously be simplified as long as the sample has the SiNx ARC and an aluminum back surface field. Finally, this dissertation presents a prospective method for eliminating or minimizing the PID issue either in the factory during manufacturing or in the field after system installation. The method uses commercially available, thin, and flexible Corning® Willow® Glass sheets or strips on the PV module glass superstrates, disrupting the current leakage path from the cells to the grounded frame.
ContributorsOh, Jaewon (Author) / Bowden, Stuart (Thesis advisor) / Tamizhmani, Govindasamy (Thesis advisor) / Honsberg, Christiana (Committee member) / Hacke, Peter (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2016
149377-Thumbnail Image.png
Description
As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells and light emitting diodes (LEDs) are proposed and studied for

As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells and light emitting diodes (LEDs) are proposed and studied for high energy conversion efficiency in both processes, respectively. The first half of this dissertation discusses the practically achievable energy conversion efficiency limit of solar cells. Since the demonstration of the Si solar cell in 1954, the performance of solar cells has been improved tremendously and recently reached 41.6% energy conversion efficiency. However, it seems rather challenging to further increase the solar cell efficiency. The state-of-the-art triple junction solar cells are analyzed to help understand the limiting factors. To address these issues, the monolithically integrated II-VI and III-V material system is proposed for solar cell applications. This material system covers the entire solar spectrum with a continuous selection of energy bandgaps and can be grown lattice matched on a GaSb substrate. Moreover, six four-junction solar cells are designed for AM0 and AM1.5D solar spectra based on this material system, and new design rules are proposed. The achievable conversion efficiencies for these designs are calculated using the commercial software package Silvaco with real material parameters. The second half of this dissertation studies the semiconductor luminescence refrigeration, which corresponds to over 100% energy usage efficiency. Although cooling has been realized in rare-earth doped glass by laser pumping, semiconductor based cooling is yet to be realized. In this work, a device structure that monolithically integrates a GaAs hemisphere with an InGaAs/GaAs quantum-well thin slab LED is proposed to realize cooling in semiconductor. The device electrical and optical performance is calculated. The proposed device then is fabricated using nine times photolithography and eight masks. The critical process steps, such as photoresist reflow and dry etch, are simulated to insure successful processing. Optical testing is done with the devices at various laser injection levels and the internal quantum efficiency, external quantum efficiency and extraction efficiency are measured.
ContributorsWu, Songnan (Author) / Zhang, Yong-Hang (Thesis advisor) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Belitsky, Andrei (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2010
158558-Thumbnail Image.png
Description
This dissertation covers my doctoral research on the cathodoluminescence (CL) study of the optical properties of III-niride semiconductors.

The first part of this thesis focuses on the optical properties of Mg-doped gallium nitride (GaN:Mg) epitaxial films. GaN is an emerging material for power electronics, especially for high power and high

This dissertation covers my doctoral research on the cathodoluminescence (CL) study of the optical properties of III-niride semiconductors.

The first part of this thesis focuses on the optical properties of Mg-doped gallium nitride (GaN:Mg) epitaxial films. GaN is an emerging material for power electronics, especially for high power and high frequency applications. Compared to traditional Si-based devices, GaN-based devices offer superior breakdown properties, faster switching speed, and reduced system size. Some of the current device designs involve lateral p-n junctions which require selective-area doping. Dopant distribution in the selectively-doped regions is a critical issue that can impact the device performance. While most studies on Mg doping in GaN have been reported for epitaxial grown on flat c-plane substrates, questions arise regarding the Mg doping efficiency and uniformity in selectively-doped regions, where growth on surfaces etched away from the exact c-plane orientation is involved. Characterization of doping concentration distribution in lateral structures using secondary ion mass spectroscopy lacks the required spatial resolution. In this work, visualization of acceptor distribution in GaN:Mg epilayers grown by metalorganic chemical vapor deposition (MOCVD) was achieved at sub-micron scale using CL imaging. This was enabled by establishing a correlation among the luminescence characteristics, acceptor concentration, and electrical conductivity of GaN:Mg epilayers. Non-uniformity in acceptor distribution has been observed in epilayers grown on mesa structures and on miscut substrates. It is shown that non-basal-plane surfaces, such as mesa sidewalls and surface step clusters, promotes lateral growth along the GaN basal planes with a reduced Mg doping efficiency. The influence of surface morphology on the Mg doping efficiency in GaN has been studied.

The second part of this thesis focuses on the optical properties of InGaN for photovoltaic applications. The effects of thermal annealing and low energy electron beam irradiation (LEEBI) on the optical properties of MOCVD-grown In0.14Ga0.86N films were studied. A multi-fold increase in luminescence intensity was observed after 800 °C thermal annealing or LEEBI treatment. The mechanism leading to the luminescence intensity increase has been discussed. This study shows procedures that significantly improve the luminescence efficiency of InGaN, which is important for InGaN-based optoelectronic devices.
ContributorsLiu, Hanxiao (Author) / Ponce, Fernando A. (Thesis advisor) / Zhao, Yuji (Committee member) / Newman, Nathan (Committee member) / Fischer, Alec M (Committee member) / Arizona State University (Publisher)
Created2020