Matching Items (6)
Filtering by

Clear all filters

157001-Thumbnail Image.png
Description
Ethylene vinyl acetate (EVA) is the most commonly used encapsulant in photovoltaic modules. However, EVA degrades over time and causes performance losses in PV system. Therefore, EVA degradation is a matter of concern from a durability point of view.

This work compares EVA encapsulant degradation in glass/backsheet and glass/glass field-aged

Ethylene vinyl acetate (EVA) is the most commonly used encapsulant in photovoltaic modules. However, EVA degrades over time and causes performance losses in PV system. Therefore, EVA degradation is a matter of concern from a durability point of view.

This work compares EVA encapsulant degradation in glass/backsheet and glass/glass field-aged PV modules. EVA was extracted from three field-aged modules (two glass/backsheet and one glass/glass modules) from three different manufacturers from various regions (cell edges, cell centers, and non-cell region) from each module based on their visual and UV Fluorescence images. Characterization techniques such as I-V measurements, Colorimetry, Different Scanning Calorimetry, Thermogravimetric Analysis, Raman spectroscopy, and Fourier Transform Infrared Spectroscopy were performed on EVA samples.

The intensity of EVA discoloration was quantified using colorimetric measurements. Module performance parameters like Isc and Pmax degradation rates were calculated from I-V measurements. Properties such as degree of crystallinity, vinyl acetate content and degree of crosslinking were calculated from DSC, TGA, and Raman measurements, respectively. Polyenes responsible for EVA browning were identified in FTIR spectra.

The results from the characterization techniques confirmed that when EVA undergoes degradation, crosslinking in EVA increases beyond 90% causing a decrease in the degree of crystallinity and an increase in vinyl acetate content of EVA. Presence of polyenes in FTIR spectra of degraded EVA confirmed the occurrence of Norrish II reaction. However, photobleaching occurred in glass/backsheet modules due to the breathable backsheet whereas no photobleaching occurred in glass/glass modules because they were hermetically sealed. Hence, the yellowness index along with the Isc and Pmax degradation rates of EVA in glass/glass module is higher than that in glass/backsheet modules.

The results implied that more acetic acid was produced in the non-cell region due to its double layer of EVA compared to the front EVA from cell region. But, since glass/glass module is hermetically sealed, acetic acid gets entrapped inside the module further accelerating EVA degradation whereas it diffuses out through backsheet in glass/backsheet modules. Hence, it can be said that EVA might be a good encapsulant for glass/backsheet modules, but the same cannot be said for glass/glass modules.
ContributorsPatel, Aesha Parimalbhai (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Green, Matthew (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2018
135407-Thumbnail Image.png
Description
This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time

This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-ToF) was used to help verify the structure of both peptides, which were purified using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). The next steps in the research are to attach the peptides to a micelle and determine their impact on micelle stability.
ContributorsMoe, Anna Marguerite (Author) / Green, Matthew (Thesis director) / Jones, Anne (Committee member) / Sullivan, Millicent (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
155444-Thumbnail Image.png
Description
This is a two-part thesis assessing the long-term reliability of photovoltaic modules.

Part 1: Manufacturing dependent reliability - Adapting FMECA for quality control in PV module manufacturing

This part is aimed at introducing a statistical tool in quality assessments in PV module manufacturing. Developed jointly by ASU-PRL and Clean Energy Associates,

This is a two-part thesis assessing the long-term reliability of photovoltaic modules.

Part 1: Manufacturing dependent reliability - Adapting FMECA for quality control in PV module manufacturing

This part is aimed at introducing a statistical tool in quality assessments in PV module manufacturing. Developed jointly by ASU-PRL and Clean Energy Associates, this work adapts the Failure Mode Effect and Criticality Analysis (FMECA, IEC 60812) to quantify the impact of failure modes observed at the time of manufacturing. The method was developed through analysis of nearly 9000 modules at the pre-shipment evaluation stage in module manufacturing facilities across south east Asia. Numerous projects were analyzed to generate RPN (Risk Priority Number) scores for projects. In this manner, it was possibly to quantitatively assess the risk being carried the project at the time of shipment of modules. The objective of this work was to develop a benchmarking system that would allow for accurate quantitative estimations of risk mitigation and project bankability.

Part 2: Climate dependent reliability - Activation energy determination for climate specific degradation modes

This work attempts to model the parameter (Isc or Rs) degradation rate of modules as a function of the climatic parameters (i.e. temperature, relative humidity and ultraviolet radiation) at the site. The objective of this work was to look beyond the power degradation rate and model based on the performance parameter directly affected by the degradation mode under investigation (encapsulant browning or IMS degradation of solder bonds). Different physical models were tested and validated through comparing the activation energy obtained for each degradation mode. It was concluded that, for the degradation of the solder bonds within the module, the Pecks equation (function of temperature and relative humidity) modelled with Rs increase was the best fit; the activation energy ranging from 0.4 – 0.7 eV based on the climate type. For encapsulant browning, the Modified Arrhenius equation (function of temperature and UV) seemed to be the best fit presently, yielding an activation energy of 0.3 eV. The work was concluded by suggesting possible modifications to the models based on degradation pathways unaccounted for in the present work.
ContributorsPore, Shantanu (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Green, Matthew (Thesis advisor) / Srinivasan, Devrajan (Committee member) / Arizona State University (Publisher)
Created2017
189276-Thumbnail Image.png
Description
Various research papers and literature were reviewed and consulted for the depolymerization of polyethylene terephthalate (PET) using long chain alkyl amines and ethylene glycol (EG) as catalyst in the aminolysis process. The main hypothesis of this thesis is to use EG as a catalyst in the aminolysis of PET using

Various research papers and literature were reviewed and consulted for the depolymerization of polyethylene terephthalate (PET) using long chain alkyl amines and ethylene glycol (EG) as catalyst in the aminolysis process. The main hypothesis of this thesis is to use EG as a catalyst in the aminolysis of PET using octylamine, dodecylamine and hexadecylamine. Initial reactions with the three amines were performed with and without EG to observe and compare the terephthalamides obtained from these reactions to test this hypothesis. Various reaction conditions like concentration of reactants, temperature and time of reaction were later considered and employed to find the optimal conditions for the depolymerization of PET before confirming the catalytic properties of EG in the aminolysis reaction. The depolymerized products were subjected to attenuated total reflectance-infrared spectroscopy (ATR-IR Spectroscopy) to check for presence of important amide and ester peaks through their infrared absorption peaks, thermogravimetric analysis (TGA) to find their Td5 temperatures and differential scanning calorimetry (DSC) to check for endothermic melting temperature of the obtained products. These characterization techniques were used to understand, examine, and compare the different properties of the products obtained from different reaction mixtures. The three distinct amines considered for this reaction also showed differences in the conversion rate of PET under similar reaction conditions thus signifying the importance of selecting an appropriate amine reactant for the aminolysis process. Finally, the in-situ IR probe was used to determine the reaction kinetics of the aminolysis reaction and the formation and loss of products and reactants with time.
ContributorsBakkireddy, Adarsh (Author) / Green, Matthew (Thesis advisor) / Emady, Heather (Committee member) / Seo, Eileen S. (Committee member) / Arizona State University (Publisher)
Created2023
171680-Thumbnail Image.png
Description
High-Density polyethylene (HDPE) is the most used polymer on earth. Since it is used in such large quantities, it has become the most extensively produced polymer on the planet. Unfortunately, the rate of reusing or recycling HDPE is far behind the rate of production leading to plastic pollution. Most of

High-Density polyethylene (HDPE) is the most used polymer on earth. Since it is used in such large quantities, it has become the most extensively produced polymer on the planet. Unfortunately, the rate of reusing or recycling HDPE is far behind the rate of production leading to plastic pollution. Most of this waste plastic ends up in landfills or incineration to recover energy. Plastic production consumes a lot of energy and is associated with CO2 emissions. This method of disposing plastic only adds to the environmental pollution rather than improving it. Primary reasons for low recycling rate appear to be more political and financial. In the US, the rate of recycling was less than 10% whereas Japan showed a recycling rate of more than 80%. The other aspect of low recycling is financial. In order to make recycling a financially viable process, efforts have to be made to streamline the process of waste collection, segregation and technically feasible process. This study focusses on the technical aspect of the issue. Even though efforts have been made to recycle HDPE, none of the processes have been recycle HDPE with financial viability, recovering full value of plastic, minimum CO2 emissions and minimum change in properties of the polymer. This study focusses on effective recycling of HDPE with minimum change in its properties. Dissolution has been used to dissolve the polymer selectively and then reprecipitating the polymer using a non-solvent to obtain the polymer grains. This is followed by mixing additives to the polymer grains to minimize degradation of the polymer during the extrusion process. The polymer is then extruded in an extruder beyond its melting temperature. This process is repeated for 5 cycles. After each cycle, the polymer is tested for its properties using the Tensile Testing, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Dynamic Mechanicalii Analysis (DMA). It was observed that the rheological properties of the polymer were maintained after the 5th recycle whereas the mechanical properties deteriorated after the 2nd recycle. Also, increase in carbonyl index was observed after 5th recycle.
ContributorsSaini, Rahul Rakesh (Author) / Green, Matthew (Thesis advisor) / Holloway, Julianne (Committee member) / Xie, Renxuan (Committee member) / Arizona State University (Publisher)
Created2022
158546-Thumbnail Image.png
Description
As experiencing hot months and thermal stresses is becoming more common, chemically protective fabrics must adapt and provide protections while reducing the heat stress to the body. These concerns affect first responders, warfighters, and workers regularly surrounded by hazardous chemical agents. While adapting traditional garments with cooling devices provides one

As experiencing hot months and thermal stresses is becoming more common, chemically protective fabrics must adapt and provide protections while reducing the heat stress to the body. These concerns affect first responders, warfighters, and workers regularly surrounded by hazardous chemical agents. While adapting traditional garments with cooling devices provides one route to mitigate this issue, these cooling methods add bulk, are time limited, and may not be applicable in locations without logistical support. Here I take inspiration from nature to guide the development of smart fabrics that have high breathability, but self-seal on exposure to target chemical(s), providing a better balance between cooling and protection.

Natural barrier materials were explored as a guide, focusing specifically on prickly pear cacti. These cacti have a natural waxy barrier that provides protection from dehydration and physically changes shape to modify surface wettability and water vapor transport. The results of this study provided a basis for a shape changing polymer to be used to respond directly to hazardous chemicals, swelling to contain the agent.

To create a stimuli responsive material, a novel superabsorbent polymer was synthesized, based on acrylamide chemistry. The polymer was tested for swelling properties in a wide range of organic liquids and found to highly swell in moderately polar organic liquids. To help predict swelling in untested liquids, the swelling of multiple test liquids were compared with their thermodynamic properties to observe trends. As the smart fabric needs to remain breathable to allow evaporative cooling, while retaining functionality when soaked with sweat, absorption of water, as well as that of an absorbing liquid in the presence of water were tested.

Micron sized particles of the developed polymer were deposited on a plastic mesh with pore size and open area similar to common clothing fabric to establish the proof of concept of using a breathable barrier to provide chemical protection. The polymer coated mesh showed minimal additional resistance to water vapor transport, relative to the mesh alone, but blocked more than 99% of a xylene aerosol from penetrating the barrier.
ContributorsManning, Kenneth (Author) / Rykaczewski, Konrad (Thesis advisor) / Burgin, Timothy (Committee member) / Emady, Heather (Committee member) / Green, Matthew (Committee member) / Thomas, Marylaura (Committee member) / Arizona State University (Publisher)
Created2020