Matching Items (96)

132583-Thumbnail Image.png

CXCL10-Induced Migration of Triple-Negative Breast Cancer Cells

Description

Inhibitor of growth factor 4 (ING4) is a tumor suppressor of which low expression has been associated with poor patient survival and aggressive tumor progression in breast cancer. ING4 is characterized as a transcription regulator of inflammatory genes. Among the

Inhibitor of growth factor 4 (ING4) is a tumor suppressor of which low expression has been associated with poor patient survival and aggressive tumor progression in breast cancer. ING4 is characterized as a transcription regulator of inflammatory genes. Among the ING4-regulated genes is CXCL10, a chemokine secreted by endothelial cells during normal inflammation response, which induces chemotactic migration of immune cells to the site. High expression of CXCL10 has been implicated in aggressive breast cancer, but the mechanism is not well understood. A potential signaling molecule downstream of Cxcl10 is Janus Kinase 2 (Jak2), a kinase activated in normal immune response. Deregulation of Jak2 is associated with metastasis, immune evasion, and tumor progression in breast cancer. Thus, we hypothesized that the Ing4/Cxcl10/Jak2 axis plays a key role in breast cancer progression. We first investigated whether Cxcl10 affected breast cancer cell migration. We also investigated whether Cxcl10-mediated migration is dependent on ING4 expression levels. We utilized genetically engineered MDAmb231 breast cancer cells with a CRISPR/Cas9 ING4-knockout construct or a viral ING4 overexpression construct. We performed Western blot analysis to confirm Ing4 expression. Cell migration was assessed using Boyden Chamber assay with or without exogenous Cxcl10 treatment. The results showed that in the presence of Cxcl10, ING4-deficient cells had a two-fold increase in migration as compared to the vector controls, suggesting Ing4 inhibits Cxcl10-induced migration. These findings support our hypothesis that ING4-deficient tumor cells have increased migration when Cxcl10 signaling is present in breast cancer. These results implicate Ing4 is a key regulator of a chemokine-induced tumor migration. Our future plan includes evaluation of Jak2 as an intermediate signaling molecule in Cxcl10/Ing4 pathway. Therapeutic implications of these findings are targeting Cxcl10 and/or Jak2 may be effective in treating ING4-deficient aggressive breast cancer.

Contributors

Agent

Created

Date Created
2019-05

132609-Thumbnail Image.png

Comparing Protocols for Extracting, Amplifying, and Imaging ApoE ε4 Allele: Preliminary work for understanding Alzheimer’s Disease in asymptomatic individuals

Description

This thesis aimed to develop a consistent protocol used to effectively image the apolipoprotein E (ApoE) ε4 allele, which is a known genetic risk factor for Alzheimer’s Disease (AD). The research team used methods to extract DNA from saliva samples,

This thesis aimed to develop a consistent protocol used to effectively image the apolipoprotein E (ApoE) ε4 allele, which is a known genetic risk factor for Alzheimer’s Disease (AD). The research team used methods to extract DNA from saliva samples, amplify the DNA using polymerase chain reaction (PCR), and image the results using gel electrophoresis and a transilluminator. Extensive literature review was used to optimize these techniques. Future studies will use these methods of characterizing the ApoE ε4 allele as preliminary work towards the goal of integrating this protocol into ongoing research in aging within the Motor Rehabilitation and Learning (MRL) Lab on Arizona State University’s campus.

Contributors

Agent

Created

Date Created
2019-05

132445-Thumbnail Image.png

From Report to Prosecution: A Comprehensive Approach to Sexual Assault Response in Arizona

Description

Every minute and a half, an American is sexually assaulted (Department of Justice, 2017). After an instance of sexual assault, some victims are given the choice of having a sexual assault evidence kit (SAK) collected. These kits are designed

Every minute and a half, an American is sexually assaulted (Department of Justice, 2017). After an instance of sexual assault, some victims are given the choice of having a sexual assault evidence kit (SAK) collected. These kits are designed to collect DNA evidence that will, in the best case scenario, result in the identification of the perpetrator. If the perpetrator cannot be located, the DNA profile can still be submitted to the FBI’s CODIS databank, which houses hundreds of thousands of DNA profiles from criminal cases, and may still lead to apprehension of the rapist. Unfortunately, some SAKs experience long delays, decades even, before being tested. To date, there are hundreds of thousands of untested SAKs that remain in police custody awaiting to be submitted for forensic profiling across the country. Here, we completed a holistic investigation of sexual assault response and SAK processing in Arizona. It is important to notice that the focus of our study not only includes SAK processing and the backlog but sexual assault prevention and improving victim reporting in an effort to understand the SAK “pipeline,” from assault to prosecution.
We identified problems in three major categories that negatively impact the SAK pipeline: historical inertia, legislative and institutional limitations, and community awareness. We found that a large number of SAKs in Arizona have remained untested due insufficient funding and staffing for public crime labs making it difficult for state labs to alleviate the SAK backlog while simultaneously responding to incoming cases (“Why the Backlog Exists,” n.d.). However, surveys of ASU undergraduate students revealed a significant interest in campus assault and the SAK backlog. Based on our findings, we suggest harnessing the interest of undergraduate students and recruiting them to specialized SAK-oriented forensic technician and sexual assault nurse examiner (SANE) training at ASU with the goal of creating a workforce that will alleviate the absence of trained professionals within the country. We also explore the possibility of the creation of a private crime laboratory at ASU devoted the processing of SAKs in Arizona as a measure of alleviating the demand on local public laboratories and providing a more economic alternative to commercial laboratories. The creation of an SAK laboratory at ASU would provide undergraduates the opportunity to learn more about real forensic analysis on campus, provide a pipeline for students to become technicians themselves, and help reduce and prevent a future SAK backlog in Arizona.

Contributors

Agent

Created

Date Created
2019-05

133284-Thumbnail Image.png

Possibility VS Practicality; A Study of the Sequential Processing of Fired Cartridge Casings

Description

There are unrealistic expectations of the forensic science discipline by the public today. More specifically about the types of evidence that can be recovered from a fired cartridge casing. The common misconception with the evidence that can be recovered from

There are unrealistic expectations of the forensic science discipline by the public today. More specifically about the types of evidence that can be recovered from a fired cartridge casing. The common misconception with the evidence that can be recovered from a cartridge casing is that all three types of evidence: DNA, latent prints, and firearms can be recovered from the same cartridge casing. However, just because some analyses are possible does not mean that they are practical. The definition of possibility is that an event can happen. However, the definition of practicality is not only that it can happen, but that the event should occur to optimize the efficiency of a given task. Through literature review of previous studies as well as experimental data, each discipline (DNA, latent prints, and firearms and toolmark analysis) were evaluated. For the experimental trials, three total experiments were carried out. Experiment one focused on the possibility aspect, so in experiment one the best conditions were simulated to receive a positive result. Experiment two focused on creating conditions that would occur at a crime scene, and experiment three refined those variables to serve as middle ground. After evaluation, each discipline was classified as possible and/or practical. These results were then used to determine practical sequential processing for a fired cartridge casing. After both experimentation and review, it was determined that the best possible sequential processing path for a cartridge casing collected at the crime scene to get the quickest information back is as follows: Firearms, DNA, Latent Prints.

Contributors

Agent

Created

Date Created
2018-05

131300-Thumbnail Image.png

Quantifying Intragenomic Variability in the 18S Gene of Trichonympha from Zootermopsis

Description

The 18S ribosomal RNA gene is ubiquitous across eukaryotes as it encodes the RNA component of the ribosomal small subunit. It is the most commonly used marker in molecular studies of unicellular eukaryotes (protists) due to its species specificity and

The 18S ribosomal RNA gene is ubiquitous across eukaryotes as it encodes the RNA component of the ribosomal small subunit. It is the most commonly used marker in molecular studies of unicellular eukaryotes (protists) due to its species specificity and high copy number in the protist genome. Recent studies have revealed the widespread occurrence of intragenomic (intra-individual) polymorphism in many protists, an understudied phenomenon which contradicts the assumed homogeneity of the 18S throughout an individual genome. This thesis quantifies and analyzes the level of intragenomic and intraspecific 18S sequence variability in three Trichonympha species (T. campanula, T. collaris, T. postcylindrica) from Zootermopsis termites. Single-cell DNA extractions, PCR, cloning, and sequencing were performed to obtain 18S rRNA sequence reads, which were then analyzed to determine levels of sequence divergence among individuals and among species. Intragenomic variability was encountered in all three species. However, excluding singleton mutations, sequence divergence was less than 1% in 53 of the 56 compared individuals. T. collaris exhibited the most substantial intragenomic variability, with sequence divergence ranging from 0 to 3.4%. Further studies with more clones per cell are needed to elucidate the true extent of intragenomic variability in Trichonympha.

Contributors

Agent

Created

Date Created
2020-05

134496-Thumbnail Image.png

Synthesis of Hybrid DNA-Protein Nanostructures

Description

While DNA and protein nanotechnologies are promising avenues for nanotechnology on their own, merging the two could create more diverse and functional structures. In order to create hybrid structures, the protein will have to undergo site-specific modification, such as the

While DNA and protein nanotechnologies are promising avenues for nanotechnology on their own, merging the two could create more diverse and functional structures. In order to create hybrid structures, the protein will have to undergo site-specific modification, such as the incorporation of an unnatural amino, p-azidophenylalanine (AzF), via Shultz amber codon suppression method, which can then participate in click chemistry with modified DNA. These newly synthesized structures will then be able to self-assemble into higher order structures. Thus far, a surface exposed residue on the aldolase protein has been mutated into an amber stop codon. The next steps are to express the protein with the unnatural amino acid, allow it to participate in click chemistry, and visualize the hybrid structure. If the structure is correct, it will be able to self-assemble.

Contributors

Agent

Created

Date Created
2017-05

135814-Thumbnail Image.png

Exploration of Enzymatic Efficiency in Double-Stranded DNA by Uracil-DNA Glycosylase and Optimization of Glycosylation Reaction of DNA Precursor

Description

The two chapters of this thesis focus on different aspects of DNA and the properties of nucleic acids as the whole. Chapter 1 focuses on the structure of DNA and its relationship to enzymatic efficiency. Chapter 2 centers itself on

The two chapters of this thesis focus on different aspects of DNA and the properties of nucleic acids as the whole. Chapter 1 focuses on the structure of DNA and its relationship to enzymatic efficiency. Chapter 2 centers itself on threose nucleic acid and optimization of a step in the path to its synthesis. While Chapter 1 discusses DNA and Uracil-DNA Glycosylase with regards to the base excision repair pathway, Chapter 2 focuses on chemical synthesis of an intermediate in the pathway to the synthesis of TNA, an analogous structure with a different saccharide in the sugar-phosphate backbone.
Chapter 1 covers the research under Dr. Levitus. Four oligonucleotides were reacted for zero, five, and thirty minutes with uracil-DNA glycosylase and subsequent addition of piperidine. These oligonucleotides were chosen based on their torsional rigidities as predicted by past research and predictions. The objective was to better understand the relationship between the sequence of DNA surrounding the incorrect base and the enzyme’s ability to remove said base in order to prepare the DNA for the next step of the base excision repair pathway. The first pair of oligonucleotides showed no statistically significant difference in enzymatic efficiency with p values of 0.24 and 0.42, while the second pair had a p value of 0.01 at the five-minute reaction. The second pair is currently being researched at different reaction times to determine at what point the enzyme seems to equilibrate and react semi-equally with all sequences of DNA.
Chapter 2 covers the research conducted under Dr. Chaput. Along the TNA synthesis pathway, the nitrogenous base must be added to the threofuranose sugar. The objective was to optimize the original protocol of Vorbrüggen glycosylation and determine if there were better conditions for the synthesis of the preferred regioisomer. This research showed that toluene and ortho-xylene were more preferable as solvents than the original anhydrous acetonitrile, as the amount of preferred isomer product far outweighed the amount of side product formed, as well as improving total yield overall. The anhydrous acetonitrile reaction had a final yield of 60.61% while the ortho-xylene system had a final yield of 94.66%, an increase of approximately 32%. The crude ratio of preferred isomer to side product was also improved, as it went from 18% undesired in anhydrous acetonitrile to 4% undesired in ortho-xylene, both values normalized to the preferred regioisomer.

Contributors

Agent

Created

Date Created
2016-05

136053-Thumbnail Image.png

Molecular Engineering of Novel Polymeric Agents for Targeted Cancer Gene Therapy

Description

Abstract Molecular Engineering of Novel Polymeric Agents for Targeted Cancer Gene Therapy Dana Matthews Cancer gene cell therapy is a strategy that involves the administration of genes for correcting the effect of mutated cancer cells in order to induce tumor

Abstract Molecular Engineering of Novel Polymeric Agents for Targeted Cancer Gene Therapy Dana Matthews Cancer gene cell therapy is a strategy that involves the administration of genes for correcting the effect of mutated cancer cells in order to induce tumor cell death. In particular, genes that encode for pro-apoptotic proteins can result in death of tumor cells. Prostate cancer is a very common cancer among males in America, and as highly destructive chemotherapy and radiation are generally the only treatments available once the cancer has metastasized, there is a need for the development of treatments that can specifically target and kill prostate cancer cells, while demonstrating low toxicity to other tissue. This experiment will attempt to create such a treatment through gene therapy techniques. The parallel synthesis and DNA binding affinity assay utilized in these experiments have produced a polymer that surpasses pEI-25, a gene delivery polymer standard, in both transfection efficacy and low cytotoxicity and trafficking of polyplexes in the cell, and finding methods to increase the transfection efficacy and specificity of polyplexes for PC3-PSMA cells.

Contributors

Agent

Created

Date Created
2008-12

136057-Thumbnail Image.png

Photophysical Studies of the DNA Microenvironment and Small Molecule-DNA Interactions

Description

Photophysical Studies of the DNA Microenvironment and Small Molecule-DNA Interactions
The photophysical properties of ethidium in a variety of organic solvents, as well as several dsDNAs, were measured. We report that the fluorescence quantum yield of intercalated ethidium is

Photophysical Studies of the DNA Microenvironment and Small Molecule-DNA Interactions
The photophysical properties of ethidium in a variety of organic solvents, as well as several dsDNAs, were measured. We report that the fluorescence quantum yield of intercalated ethidium is .30(.03), which falls between previous stated measurements of .14 and .60. We believe this to be the most accurately measured fluorescence quantum yield to date, as verified by Strickler-Berg analyses, which exhibit excellent agreement with experimental fluorescence lifetimes. A marked hypochromism upon binding to DNA is noted due to interactions of the dye’s and nucleobases’ respective π-stacks. This more than counteracts the expected increase in transition dipole due to increased conjugation caused by twisting of the phenyl moiety upon intercalation.
The reduced volume cylinder model was tested by the quenching of the fluorescence of an intercalator (ethidium bromide) by a groove binder (methyl viologen). We report that the model is not accurate over a relevant range of DNA concentrations.

Contributors

Agent

Created

Date Created
2005-05

PEGylation of DNA Nanostructures Using Uncatalyzed Click Chemistry

Description

Using DNA nanotechnology a library of structures of various geometries have been built; these structures are modified chemically and/or enzymatically at nanometer precisions. With DNA being chemically very stable, these structures can be functionalized through an abundance of well-established protocols.

Using DNA nanotechnology a library of structures of various geometries have been built; these structures are modified chemically and/or enzymatically at nanometer precisions. With DNA being chemically very stable, these structures can be functionalized through an abundance of well-established protocols. Additionally, they can be used for various biological and medicinal purposes, such as drug delivery. For in vivo applications, the DNA nanostructures must have a long circulation life in the bloodstream; otherwise, they could be easily excreted shortly after entry. One way of making these nanostructures long lasting in the blood is to cover them with the biocompatible polymer, polyethylene glycol (PEG). Adding DNA to PEG before forming structures has been found to interfere in the hybridization of the DNA in the structure, resulting in formation of deformed structures. In this study we have developed a new methodology based on "click chemistry" (CC) to modify the surface of DNA nanostructures with PEG after they are formed. These structures can then be used for in vivo studies and potential applications in the future.

Contributors

Agent

Created

Date Created
2015-05