Matching Items (3)
Filtering by

Clear all filters

156883-Thumbnail Image.png
Description
The continuing advancement of modulation standards with newer generations of cellular technology, promises ever increasing data rate and bandwidth efficiency. However, these modulation schemes present high peak to average power ratio (PAPR) even after applying crest factor reduction. Being the most power-hungry component in the radio frequency (RF) transmitter,

The continuing advancement of modulation standards with newer generations of cellular technology, promises ever increasing data rate and bandwidth efficiency. However, these modulation schemes present high peak to average power ratio (PAPR) even after applying crest factor reduction. Being the most power-hungry component in the radio frequency (RF) transmitter, power amplifiers (PA) for infrastructure applications, need to operate efficiently at the presence of these high PAPR signals while maintaining reasonable linearity performance which could be improved by moderate digital pre-distortion (DPD) techniques. This strict requirement of operating efficiently at average power level while being capable of delivering the peak power, made the load modulated PAs such as Doherty PA, Outphasing PA, various Envelope Tracking PAs, Polar transmitters and most recently the load modulated balanced PA, the prime candidates for such application. However, due to its simpler architecture and ability to deliver RF power efficiently with good linearity performance has made Doherty PA (DPA) the most popular solution and has been deployed almost exclusively for wireless infrastructure application all over the world.

Although DPAs has been very successful at amplifying the high PAPR signals, most recent advancements in cellular technology has opted for higher PAPR based signals at wider bandwidth. This lead to increased research and development work to innovate advanced Doherty architectures which are more efficient at back-off (BO) power levels compared to traditional DPAs. In this dissertation, three such advanced Doherty architectures and/or techniques are proposed to achieve high efficiency at further BO power level compared to traditional architecture using symmetrical devices for carrier and peaking PAs. Gallium Nitride (GaN) based high-electron-mobility (HEMT) technology has been used to design and fabricate the DPAs to validate the proposed advanced techniques for higher efficiency with good linearity performance at BO power levels.
ContributorsRuhul Hasin, Muhammad (Author) / Kitchen, Jennifer (Thesis advisor) / Aberle, James T., 1961- (Committee member) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2018
135382-Thumbnail Image.png
Description
In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is

In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is connected to a computer programmed with software to process signals from the transmitter and determine whether or not a competitor scored a point. The current design of EBPs, however, have numerous shortcomings, including sensing false positives, failing to register hits, costing too much, and relying on human judgment. This thesis will thoroughly delineate the operation of the current EBPs used and discuss research performed in order to eliminate these weaknesses.
ContributorsSpell, Valerie Anne (Author) / Kozicki, Michael (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
151309-Thumbnail Image.png
Description
This thesis describes the design process used in the creation of a two stage cellular power amplifier. A background for understanding amplifier linearity, device properties, and ACLR estimation is provided. An outline of the design goals is given with a focus on linearity with high efficiency. The full design is

This thesis describes the design process used in the creation of a two stage cellular power amplifier. A background for understanding amplifier linearity, device properties, and ACLR estimation is provided. An outline of the design goals is given with a focus on linearity with high efficiency. The full design is broken into smaller elements which are discussed in detail. The main contribution of this thesis is the description of a novel interstage matching network topology for increasing efficiency. Ultimately the full amplifier design is simulated and compared to the measured results and design goals. It was concluded that the design was successful, and used in a commercially available product.
ContributorsSpivey, Erin (Author) / Aberle, James T., 1961- (Thesis advisor) / Kitchen, Jennifer (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012