Matching Items (797)
Filtering by

Clear all filters

ContributorsChang, Ruihong (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-29
153274-Thumbnail Image.png
Description
Scarcity of potable water is one of the major problems faced in the world today. Majority of this problem can be solved if technology is developed to obtain potable water from brackish or saline water. The present desalination methods face challenges such as high costs in terms of energy consumption

Scarcity of potable water is one of the major problems faced in the world today. Majority of this problem can be solved if technology is developed to obtain potable water from brackish or saline water. The present desalination methods face challenges such as high costs in terms of energy consumption and infrastructure, physical size of the system, requirement of membrane and high pressure systems and hence have been facing various issues in implementation of the same.

This research provides a new low pressure, low energy, portable method to desalinate water without the need for separation membranes, heat or chemical reactions. This method is energy efficient, cost effective, compact, environment friendly and suitable for portable desalination units. This technology, named as Polyphase Alternating current Bi-Ionic Propulsion System (PACBIPS) makes use of polyphase alternating current source to create a gradient in salt concentration. The gradient in salt concentration is achieved due to the creation of a traveling wave which attracts anions on its positive peak (crests) and cations on its negative peak (troughs) and travels along a central pipe thereby flushing the ions down.

Another method of PACBIPS is based on Helmholtz capacitor which involves the formation of an electric double layer between the electrode and electrolyte consisting of equal and opposite ions which can be approximated as a capacitor. Charging and discharging this capacitor helps adsorb the ions onto a carbon electrode which has high surface area and electrical conductivity. This desalinates seawater and provides pure water. Mathematical modeling, analysis and implementation of the two methods have

been presented in this work. The effects of zeta potential, electric field screening, electric mobility on desalination have been discussed.
ContributorsKrishna Kashyap, Suhas (Author) / Hui, Joseph (Thesis advisor) / Ayyanar, Raja (Committee member) / Rodriguez, Armando A (Committee member) / Arizona State University (Publisher)
Created2014
153808-Thumbnail Image.png
Description
Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The

Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The work was commissioned by violinist Lev Polyakin, who specifically requested some short pieces that could be performed in a local jazz establishment named Night Town in Cleveland, Ohio. The result is a work that is approximately fifteen minutes in length. Schoenfeld is a respected composer in the contemporary classical music community, whose Café Music (1986) for piano trio has recently become a staple of the standard chamber music repertoire. Many of his other works, however, remain in relative obscurity. It is the focus of this document to shed light on at least one other notable composition; Four Souvenirs for Violin and Piano. Among the topics to be discussed regarding this piece are a brief history behind the genesis of this composition, a structural summary of the entire work and each of its movements, and an appended practice guide based on interview and coaching sessions with the composer himself. With this project, I hope to provide a better understanding and appreciation of this work.
ContributorsJanczyk, Kristie Annette (Author) / Ryan, Russell (Thesis advisor) / Campbell, Andrew (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2015
157445-Thumbnail Image.png
Description
Hydrogel polymers have been the subject of many studies, due to their fascinating ability to alternate between being hydrophilic and hydrophobic, upon the application of appropriate stimuli. In particular, thermo-responsive hydrogels such as N-Isopropylacrylamide (NIPAM), which possess a unique lower critical solution temperature (LCST) of 32°C, have been leveraged for

Hydrogel polymers have been the subject of many studies, due to their fascinating ability to alternate between being hydrophilic and hydrophobic, upon the application of appropriate stimuli. In particular, thermo-responsive hydrogels such as N-Isopropylacrylamide (NIPAM), which possess a unique lower critical solution temperature (LCST) of 32°C, have been leveraged for membrane-based processes such as using NIPAM as a draw agent for forward osmosis (FO) desalination. The low LCST temperature of NIPAM ensures that fresh water can be recovered, at a modest energy cost as compared to other thermally based desalination processes which require water recovery at higher temperatures. This work studies by experimentation, key process parameters involved in desalination by FO using NIPAM and a copolymer of NIPAM and Sodium Acrylate (NIPAM-SA). It encompasses synthesis of the hydrogels, development of experiments to effectively characterize synthesized products, and the measuring of FO performance for the individual hydrogels. FO performance was measured using single layers of NIPAM and NIPAM-SA respectively. The values of permeation flux obtained were compared to relevant published literature and it was found to be within reasonable range. Furthermore, a conceptual design for future large-scale implementation of this technology is proposed. It is proposed that perhaps more effort should focus on physical processes that have the ability to increase the low permeation flux of hydrogel driven FO desalination systems, rather than development of novel classes of hydrogels
ContributorsAbdullahi, Adnan None (Author) / Phelan, Patrick (Thesis advisor) / Wang, Robert (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2019
156696-Thumbnail Image.png
Description
Just for a moment! Imagine you live in Arizona without air-conditioning systems!

Air-conditioning and refrigeration systems are one of the most crucial systems in anyone’s house and car these days. Energy resources are becoming more scarce and expensive. Most of the currently used refrigerants have brought an international concern about global

Just for a moment! Imagine you live in Arizona without air-conditioning systems!

Air-conditioning and refrigeration systems are one of the most crucial systems in anyone’s house and car these days. Energy resources are becoming more scarce and expensive. Most of the currently used refrigerants have brought an international concern about global warming. The search for more efficient cooling/refrigeration systems with environmental friendly refrigerants has become more and more important so as to reduce greenhouse gas emissions and ensure sustainable and affordable energy systems. The most widely used air-conditioning and refrigeration system, based on the vapor compression cycle, is driven by converting electricity into mechanical work which is a high quality type of energy. However, these systems can instead be possibly driven by heat, be made solid-state (i.e., thermoelectric cooling), consist entirely of a gaseous working fluid (i.e., reverse Brayton cycle), etc. This research explores several thermally driven cooling systems in order to understand and further overcome some of the major drawbacks associated with their performance as well as their high capital costs. In the second chapter, we investigate the opportunities for integrating single- and double-stage ammonia-water (NH3–H2O) absorption refrigeration systems with multi-effect distillation (MED) via cascade of rejected heat for large-scale plants. Similarly, in the third chapter, we explore a new polygeneration cooling-power cycle’s performance based on Rankine, reverse Brayton, ejector, and liquid desiccant cycles to produce power, cooling, and possibly fresh water for various configurations. Different configurations are considered from an energy perspective and are compared to stand-alone systems. In the last chapter, a new simple, inexpensive, scalable, environmentally friendly cooling system based on an adsorption heat pump system and evacuated tube solar collector is experimentally and theoretically studied. The system is destined as a small-scale system to harness solar radiation to provide a cooling effect directly in one system.
ContributorsAlelyani, Sami M (Author) / Phelan, Patrick E (Thesis advisor) / Wang, Liping (Committee member) / Stechel, Ellen B (Committee member) / Calhoun, Ronald J (Committee member) / Alalili, Ali R (Committee member) / Arizona State University (Publisher)
Created2018
156993-Thumbnail Image.png
Description
Nanoporous materials, with pore sizes less than one nanometer, have been incorporated as filler materials into state-of-the-art polyamide-based thin-film composite membranes to create thin-film nanocomposite (TFN) membranes for reverse osmosis (RO) desalination. However, these TFN membranes have inconsistent changes in desalination performance as a result of filler incorporation. The

Nanoporous materials, with pore sizes less than one nanometer, have been incorporated as filler materials into state-of-the-art polyamide-based thin-film composite membranes to create thin-film nanocomposite (TFN) membranes for reverse osmosis (RO) desalination. However, these TFN membranes have inconsistent changes in desalination performance as a result of filler incorporation. The nano-sized filler’s transport role for enhancing water permeability is unknown: specifically, there is debate around the individual transport contributions of the polymer, nanoporous particle, and polymer/particle interface. Limited studies exist on the pressure-driven water transport mechanism through nanoporous single-crystal nanoparticles. An understanding of the nanoporous particles water transport role in TFN membranes will provide a better physical insight on the improvement of desalination membranes.

This dissertation investigates water permeation through single-crystal molecular sieve zeolite A particles in TFN membranes in four steps. First, the meta-analysis of nanoporous materials (e.g., zeolites, MOFs, and graphene-based materials) in TFN membranes demonstrated non-uniform water-salt permselectivity performance changes with nanoporous fillers. Second, a systematic study was performed investigating different sizes of non-porous (pore-closed) and nanoporous (pore-opened) zeolite particles incorporated into conventionally polymerized TFN membranes; however, the challenges of particle aggregation, non-uniform particle dispersion, and possible particle leaching from the membranes limit analysis. Third, to limit aggregation and improve dispersion on the membrane, a TFN-model membrane synthesis recipe was developed that immobilized the nanoparticles onto the support membranes surface before the polymerization reaction. Fourth, to quantify the possible water transport pathways in these membranes, two different resistance models were employed.

The experimental results show that both TFN and TFN-model membranes with pore-opened particles have higher water permeance compared to those with pore-closed particles. Further analysis using the resistance in parallel and hybrid models yields that water permeability through the zeolite pores is smaller than that of the particle/polymer interface and higher than the water permeability of the pure polymer. Thus, nanoporous particles increase water permeability in TFN membranes primarily through increased water transport at particle/polymer interface. Because solute rejection is not significantly altered in our TFN and TFN-model systems, the results reveal that local changes in the polymer region at the polymer/particle interface yield high water permeability.
ContributorsCay Durgun, Pinar (Author) / Lind, Mary Laura (Thesis advisor) / Lin, Jerry Y. S. (Committee member) / Green, Matthew D. (Committee member) / Seo, Dong K. (Committee member) / Tongay, Sefaattin (Committee member) / Arizona State University (Publisher)
Created2018
ContributorsASU Library. Music Library (Publisher)
Created2018-02-23
ContributorsWhite, Aaron (Performer) / Kim, Olga (Performer) / Hammond, Marinne (Performer) / Shaner, Hayden (Performer) / Yoo, Katie (Performer) / Shoemake, Crista (Performer) / Gebe, Vladimir, 1987- (Performer) / Wills, Grace (Performer) / McKinch, Riley (Performer) / Freshmen Four (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-27
136187-Thumbnail Image.png
Description
This paper considers the state of desalination today and explores improvement of the reverse osmosis process via exergy analysis. Various methods of desalination in place today were explored, along with the proportion of each of those methods in use today. From literature reviews, it was found the reverse osmosis (RO)

This paper considers the state of desalination today and explores improvement of the reverse osmosis process via exergy analysis. Various methods of desalination in place today were explored, along with the proportion of each of those methods in use today. From literature reviews, it was found the reverse osmosis (RO) and multi-stage flash (MSF) desalination were the main methods of desalination in use today. Desalination is an energy intensive process and so this paper aimed to address this issue in three ways: by exploring various coupling with renewable energy sources, carrying out an exergy analysis on the MSF and RO processes, and finally exploring conceptual methods of interest. It was found that concentrated solar power was best suited for the MSF process, since the MSF process require direct heat. Wind energy was best suited for the RO process, since RO was less energy intensive and so could account for wind variability. The exergy analysis demonstrated very low second law efficiency for both desalination processes (~4%), with most of the exergy being destroyed in the separation process (~75%). The RO process also demonstrated a higher efficiency and lower exergy destruction, reinforcing the conlcusion that RO is the less energy intensive of the two. Based on the analysis, it was found throttling valves account for the next highest exergy destruction after the separation process. An alternate plant design was proposed to fully utilize wasted pressure, which resulted in less energy consumption. Finally, two conceptual methods, a mobile desalination plant and the Hybrid process, were explored that could potentially make the RO process a more valuable asset to society and more economically viable with a higher yield
ContributorsKotagama, Praveen Budhijith Bandara (Author) / Wells, Valana (Thesis director) / Miner, Mark (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136204-Thumbnail Image.png
Description
This thesis investigates the viability of a solar still for desalination of a personal water supply. The end goal of the project is to create a design that meets the output requirement while tailoring the components to focus on low cost so it would be feasible in the impoverished areas

This thesis investigates the viability of a solar still for desalination of a personal water supply. The end goal of the project is to create a design that meets the output requirement while tailoring the components to focus on low cost so it would be feasible in the impoverished areas of the world. The primary requirement is an output of 3 liters of potable water per day, the minimum necessary for an adult human. The study examines the effect of several design parameters, such as the basin material, basin thickness, starting water depth, basin dimensions, cover material, cover angle, and cover thickness. A model for the performance of a solar still was created in MATLAB to simulate the system's behavior and sensitivity to these parameters. An instrumented prototype solar still demonstrated viability of the concept and provided data for validation of the MATLAB model.
ContributorsRasmussen, Dylan James (Author) / Wells, Valana (Thesis director) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05