Matching Items (18)

131035-Thumbnail Image.png

The Development of Expressive Past Tense in Children Learning English as a Second Language

Description

Research regarding typical English language development in children who are bilingual is of interest for speech-language pathologists, but often this information is not available to them. As a result, many

Research regarding typical English language development in children who are bilingual is of interest for speech-language pathologists, but often this information is not available to them. As a result, many individuals find themselves believing false stereotypes about children who are bilingual, such as the idea that bilingualism causes developmental delay or disorders. For example, individuals do not realize the differences in past tense development for bilingual children versus monolingual children, a form that is often difficult for monolingual English-speaking children with developmental language delays. By focusing on a specific aspect of language development, such as English past tense acquisition of children who are bilingual, and observing changes in MLU and grammaticality that accompany acquisition, this study seeks to increase the existing knowledge on bilingualism and language development. Specifically, we will answer the following questions: a) At which grade level do Spanish-English bilingual children master English past tense after they enter English-only schooling in preschool? b) What types of errors do the children make with regular past tense? c) what types of errors do they make with irregular past tense? and d) What is the level of English grammaticality and MLUw at each grade level in English after children enter preschool? This study examined past-tense accuracy, MLU, and grammaticality development over a period of 5 years, in 13 children who were participants in a larger project called the Language and Reading Research Consortium (LARRC). Children were followed from preschool to third grade. They provided a yearly language sample by retelling one of the wordless Marianna Meyer and Mercer Meyer frog books, such as Frog on His Own or A Boy a Dog a Frog and a Friend. The language samples were then transcribed, coded, and analyzed using the Systematic Analysis of Language Transcripts (SALT) software. Results indicate that children progressively improved over the years, with children reaching over 80% accuracy with past tense by year 3 or first grade; they demonstrated the most improvement in MLU between years 2 to 3 and years 3 to 4; and they showed a gradual improvement in grammaticality each year, with the exception of no increase between years 4 to 5. Findings from the study indicate that there is leveling in all three areas after 2nd grade. These results contribute to our understanding of normal English language development in bilingual children and may improve assessment when we evaluate their performance in English as a second language.

Contributors

Agent

Created

Date Created
  • 2020-12

136529-Thumbnail Image.png

A 2D Geometric Morphometric Analysis of Changes in the Basicranium in Relation to Trunk Posture in Mammals

Description

Mammals with a habitually orthograde trunk posture possess a more anterior foramen magnum than mammals with non-orthograde trunk postures. Russo & Kirk (2013) also found that bipedal orthograde mammals possess

Mammals with a habitually orthograde trunk posture possess a more anterior foramen magnum than mammals with non-orthograde trunk postures. Russo & Kirk (2013) also found that bipedal orthograde mammals possess a more anteriorly placed foramen magnum than those that are just habitually orthograde. This finding has allowed us to use foramen magnum position as a predictor of trunk posture in early hominins. This prompts more research of how the other landmarks on the cranial base move in relation to this shift in foramen magnum positioning. I collected landmark data on images of 125 mammalian basicrania spanning 41 species that differed in trunk posture. Using Procrustes and Principal Components Analysis (PCA), I attempted to evaluate the effects of trunk posture on basicranial morphology, primarily focusing on the placement of the carotid and jugular foramina. The results supported Russo and Kirk's finding of a more anterior foramen magnum placement in orthograde mammals; in addition, the results displayed correlations between foramen magnum position and carotid foramen position among primates and diprotodonts.

Contributors

Agent

Created

Date Created
  • 2015-05

148387-Thumbnail Image.png

Statistical Analyses of Octopus bimaculoides Morphology and Physiology

Description

Chapter 1: Functional Specialization and Arm Length in Octopus bimaculoides<br/>Although studies are limited, there is some evidence that octopuses use their arms for specialized functions. For example, in Octopus maya

Chapter 1: Functional Specialization and Arm Length in Octopus bimaculoides<br/>Although studies are limited, there is some evidence that octopuses use their arms for specialized functions. For example, in Octopus maya and O. vulgaris, the anterior arms are utilized more frequently for grasping and exploring (Lee, 1992; Byrne et al., 2006a), while posterior arms are more frequently utilized for crawling in O. vulgaris (Levy et al., 2015). In addition, O. vulgaris uses favored arms when retrieving food and making contact with a T-maze as dictated by their lateralized vision (Byrne, 2006b). O. vulgaris also demonstrates a preference for anterior arms when retrieving food from a Y-maze (Gutnick et. al. 2020). In Octopus bimaculoides bending and elongation were more frequent in anterior arms than posterior arms during reaching and grasping tasks, and right arms displayed deformation more frequently than left arms, with the exception of the hectocotylus (R3) in males (Kennedy et. al. 2020). Given these observed functional differences, the goal of this study was to determine if morphological differences exist between different octopus arm identities, coded as L1-L4 and R1-R4. In particular, the relationship between arm length and arm identity was analyzed statistically. The dataset included 111 intact arms from 22 wild-caught specimens of O. bimaculoides (11 male and 11 female). Simple linear regressions and an analysis of covariance were performed to test the relationship between arm length and a number of factors, including body mass, sex, anterior versus posterior location, and left versus the right side. Mass had a significant linear relationship with arm length and a one-way ANOVA demonstrated that arm identity is significantly correlated with arm length. Moreover, an analysis of covariance demonstrated that independent of mass, arm identity has a significant linear relationship with arm length. Despite an overall appearance of bilateral symmetry, arms of different identities do not have statistically equivalent lengths in O. bimaculoides. Furthermore, differences in arm length do not appear to be related to sex, anterior versus posterior location, or left or right side. These results call into question the existing practice of treating all arms as equivalent by either using a single-arm measurement as representative of all eight or calculating an average length and suggest that morphological analyses of specific arm identities may be more informative.<br/><br/>Chapter 2: Predicting and Analyzing Octopus bimaculoides Sensitivity to Global Anesthetic<br/>Although global anesthetic is widely used in human and veterinary medicine the mechanism and impact of global anesthetic is relatively poorly comprehended, even in well-studied mammalian models. Invertebrate anesthetic is even less understood. In order to evaluate factors that impact anesthetic effectiveness analyses were conducted on 22 wild-caught specimens of Octopus bimaculoides during 72 anesthetic events.Three machine learning models: regression tree, random forest, and generalized additive model were utilized to make predictions of the concentration of anesthetic (percent ethanol by volume) from 11 features and to determine feature importance in making those predictions. The fit of each model was analyzed on three criteria: correlation coefficient, mean squared error, and relative error. Feature importance was determined in a model-specific manner. Predictions from the best performing model, random forest, have a .82 correlation coefficient with experimental values. Feature importance suggests that temperature on arrival and cohabitation factors strongly influence predictions for anesthesia concentration. This likely indicates the transportation process was incurring stress on the animals and that cohabitation was also stressful for the typically solitary O. bimaculoides. This long-term stress could lead to a decline in the animal’s well-being and a lower necessary ethanol concentration (Horvath et al., 2013). This analysis provides information to improve the care of octopus in laboratory settings and furthers the understanding of the effects of global anesthetic in invertebrates, particularly one with a distributed nervous system.

Contributors

Agent

Created

Date Created
  • 2021-05

135463-Thumbnail Image.png

Phenotypic Plasticity and Early Life Cycle Development of the Chytrid Fungus Batrachochytrium dendrobatidis

Description

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has captured human attention because it is a pathogen that has contributed to global amphibian declines. Despite increased research, much is still unknown

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has captured human attention because it is a pathogen that has contributed to global amphibian declines. Despite increased research, much is still unknown about how it develops. For example, the fact that Bd exhibits phenotypic plasticity during development was only recently identified. In this thesis, the causes of phenotypic plasticity in Bd are tested by exposing the fungus to different substrates, including powdered frog skin and keratin, which seems to play an important role in the fungus's colonization of amphibian epidermis. A novel swelling structure emerging from Bd germlings developed when exposed to keratin and frog skin. This swelling has not been observed in Bd grown in laboratory cultures before, and it is possible that it is analogous to the germ tube Bd develops in vivo. Growth of the swelling suggests that keratin plays a role in the phenotypic plasticity expressed by Bd.

Contributors

Agent

Created

Date Created
  • 2016-05

Integrating Art and Science: Evolution of the Beak

Description

Evolution is a powerful process that acts on features as organisms adapt to fill a variety of niches. It is visible in the emergence of the beak in the fossil

Evolution is a powerful process that acts on features as organisms adapt to fill a variety of niches. It is visible in the emergence of the beak in the fossil record, through a number of small changes over time. To explain and convey these changes to a general audience, I produced an art book combining my review of bird beak evolution with art. The intent was to present evolution in an informative, visual, and engaging manner that a general audience would be able to understand.

Contributors

Agent

Created

Date Created
  • 2020-05

132543-Thumbnail Image.png

Octopus Transverse and Internal Longitudinal Arm Muscles in Relation to Fetching Movements

Description

Octopus arms employ a complex three dimensional array of musculature, called a
muscular hydrostat, which allows for nearly infinite degrees of freedom of movement without
the structure of a skeletal

Octopus arms employ a complex three dimensional array of musculature, called a
muscular hydrostat, which allows for nearly infinite degrees of freedom of movement without
the structure of a skeletal system. This study employed Magnetic Resonance Imaging with a
Gadoteridol-based contrast agent to image the octopus arm and view the internal tissues. Muscle
layering was mapped and area was measured using AMIRA image processing and the trends in
these layers at the proximal, middle, and distal portions of the arms were analyzed. A total of 39
arms from 6 specimens were scanned to give 112 total imaged sections (38 proximal, 37 middle,
37 distal), from which to ascertain and study the possible differences in musculature. The
images revealed significant increases in the internal longitudinal muscle layer percentages
between the proximal and middle, proximal and distal, and middle and distal sections of the
arms. These structural differences are hypothesized to be used for rapid retraction of the distal
segment when encountering predators or noxious stimuli. In contrast, a significant decrease in
the transverse muscle layer was found when comparing the same sections. These structural
differences are hypothesized to be a result of bending behaviors during retraction. Additionally,
the internal longitudinal layer was separately studied orally, toward the sucker, and aborally,
away from the sucker. The significant differences in oral and aboral internal longitudinal
musculature in proximal, middle, and distal sections is hypothesized to support the pseudo-joint
functionality displayed in octopus fetching behaviors. The results indicate that individual
octopus arm morphology is more unique than previously thought and supports that internal
structural differences exist to support behavioral functionality.

Contributors

Agent

Created

Date Created
  • 2019-05

152313-Thumbnail Image.png

Analysis of spacecraft data for the study of diverse lunar volcanism and regolith maturation rates

Description

Lunar Reconnaissance Orbiter (LRO) and MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft missions provide new data for investigating the youngest impact craters on Mercury and the Moon, along

Lunar Reconnaissance Orbiter (LRO) and MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft missions provide new data for investigating the youngest impact craters on Mercury and the Moon, along with lunar volcanic end-members: ancient silicic and young basaltic volcanism. The LRO Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) in-flight absolute radiometric calibration used ground-based Robotic Lunar Observatory and Hubble Space Telescope data as standards. In-flight radiometric calibration is a small aspect of the entire calibration process but an important improvement upon the pre-flight measurements. Calibrated reflectance data are essential for comparing images from LRO to missions like MESSENGER, thus enabling science through engineering. Relative regolith optical maturation rates on Mercury and the Moon are estimated by comparing young impact crater densities and impact ejecta reflectance, thus empirically testing previous models of faster rates for Mercury relative to the Moon. Regolith maturation due to micrometeorite impacts and solar wind sputtering modies UV-VIS-NIR surface spectra, therefore understanding maturation rates is critical for interpreting remote sensing data from airless bodies. Results determined the regolith optical maturation rate on Mercury is 2 to 4 times faster than on the Moon. The Gruithuisen Domes, three lunar silicic volcanoes, represent relatively rare lunar lithologies possibly similar to rock fragments found in the Apollo sample collection. Lunar nonmare silicic volcanism has implications for lunar magmatic evolution. I estimated a rhyolitic composition using morphologic comparisons of the Gruithuisen Domes, measured from NAC 2-meter-per-pixel digital topographic models (DTMs), with terrestrial silicic dome morphologies and laboratory models of viscoplastic dome growth. Small, morphologically sharp irregular mare patches (IMPs) provide evidence for recent lunar volcanism widely distributed across the nearside lunar maria, which has implications for long-lived nearside magmatism. I identified 75 IMPs (100-5000 meters in dimension) in NAC images and DTMs, and determined stratigraphic relationships between units common to all IMPs. Crater counts give model ages from 18-58 Ma, and morphologic comparisons with young lunar features provided an additional age constraint of <100 Ma. The IMPs formed as low-volume basaltic eruptions significantly later than previous evidence of lunar mare basalt volcanism's end (1-1.2 Ga).

Contributors

Agent

Created

Date Created
  • 2013

150853-Thumbnail Image.png

Morphology and pragmatics of the diminutive: evidence from Macedonian

Description

Extensive cross-linguistic data document a wide gamut of semantic and pragmatic uses of the diminutive that revolve around the fundamental concepts of `small' and `child'. As typical inventory of informal

Extensive cross-linguistic data document a wide gamut of semantic and pragmatic uses of the diminutive that revolve around the fundamental concepts of `small' and `child'. As typical inventory of informal registers, diminutives are utilized as pragmatic markers of politeness in a wide range of contextual meanings. This dissertation is intended to fill some major gaps in the systematic and empirical research on the formation and pragmatic uses of the diminutives in Macedonian and to explore the role of diminutivization in a broader linguistic framework, by examining the consistency of the field of diminutives, the core and peripheral meanings of the diminutive, their typology, as well as their pragmatic potential. The morphology and pragmatics of the diminutive is examined by combining data from electronic and printed sources, video recordings of natural conversations, as well as from material collected from participant and non-participant observations. At the level of morphology, it is argued that three fundamental semantic constraints underlie the formation of diminutives: [-big], [+ emotional], and [+ informal]. Furthermore, it is shown how diminutive combinability is rule governed in Macedonian by proposing sets of formal constraints for all grades of diminutives. At the level of pragmatics, the pragmatic functions of the diminutives proper and the related periphrastic diminutive malku are investigated in a variety of contexts involving child-directed speech (CDS) and adult communication. By analyzing the pragmatic functions of the diminutive in a series of speech acts, and drawing upon cross-cultural interpretations suggested by Wierzbicka (1991), it is argued that, in Macedonian, social bonding, cordiality, intimacy or affection are pragmatically more salient than personal autonomy in the Anglo-Saxon societies, realized through non-imposition, tentativeness, or similar pragmatic strategies for saving face. Additionally, it is contended that there exist cultural differences in the assessment of the concept of imposition between these societies. The analyses of the pragmatic potential of the diminutive proper and the periphrastic diminutive 'malku' give rise to the claim that Macedonian culture is predominantly founded on the pragmatic principle of positive politeness.

Contributors

Agent

Created

Date Created
  • 2012

155972-Thumbnail Image.png

Multiscale Modeling of Structure-Property Relationships in Polymers with Heterogenous Structure

Description

The exceptional mechanical properties of polymers with heterogeneous structure, such as the high toughness of polyethylene and the excellent blast-protection capability of polyurea, are strongly related to their morphology and

The exceptional mechanical properties of polymers with heterogeneous structure, such as the high toughness of polyethylene and the excellent blast-protection capability of polyurea, are strongly related to their morphology and nanoscale structure. Different polymer microstructures, such as semicrystalline morphology and segregated nanophases, lead to coordinated molecular motions during deformation in order to preserve compatibility between the different material phases. To study molecular relaxation in polyethylene, a coarse-grained model of polyethylene was calibrated to match the local structural variable distributions sampled from supercooled atomistic melts. The coarse-grained model accurately reproduces structural properties, e.g., the local structure of both the amorphous and crystalline phases, and thermal properties, e.g., glass transition and melt temperatures, and dynamic properties: including the vastly different relaxation time scales of the amorphous and crystalline phases. A hybrid Monte Carlo routine was developed to generate realistic semicrystalline configurations of polyethylene. The generated systems accurately predict the activation energy of the alpha relaxation process within the crystalline phase. Furthermore, the models show that connectivity to long chain segments in the amorphous phase increases the energy barrier for chain slip within crystalline phase. This prediction can guide the development of tougher semicrystalline polymers by providing a fundamental understanding of how nanoscale morphology contributes to chain mobility. In a different study, the macroscopic shock response of polyurea, a phase segregated copolymer, was analyzed using density functional theory (DFT) molecular dynamics (MD) simulations and classical MD simulations. The two models predict the shock response consistently up to shock pressures of 15 GPa, beyond which the DFT-based simulations predict a softer response. From the DFT simulations, an analysis of bond scission was performed as a first step in developing a more fundamental understanding of how shock induced material transformations effect the shock response and pressure dependent strength of polyurea subjected to extreme shocks.

Contributors

Agent

Created

Date Created
  • 2017

154314-Thumbnail Image.png

Ponds, flows, and ejecta of impact cratering and volcanism: a remote sensing perspective of a dynamic Moon

Description

Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with

Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with similar morphologies including ponds and flows of impact melt and lava around the central crater. Ejecta from both impact and volcanic craters can also include a high percentage of melted rock. Using Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) images, crucial details of these landforms are finally revealed, suggesting a much more dynamic Moon than is generally appreciated. Impact melt ponds and flows at craters as small as several hundred meters in diameter provide empirical evidence of abundant melting during the impact cratering process (much more than was previously thought), and this melt is mobile on the lunar surface for a significant time before solidifying. Enhanced melt deposit occurrences in the lunar highlands (compared to the mare) suggest that porosity, target composition, and pre-existing topography influence melt production and distribution. Comparatively deep impact craters formed in young melt deposits connote a relatively rapid evolution of materials on the lunar surface. On the other end of the spectrum, volcanic eruptions have produced the vast, plains-style mare basalts. However, little was previously known about the details of small-area eruptions and proximal volcanic deposits due to a lack of resolution. High-resolution images reveal key insights into small volcanic cones (0.5-3 km in diameter) that resemble terrestrial cinder cones. The cones comprise inter-layered materials, spatter deposits, and lava flow breaches. The widespread occurrence of the cones in most nearside mare suggests that basaltic eruptions occur from multiple sources in each basin and/or that rootless eruptions are relatively common. Morphologies of small-area volcanic deposits indicate diversity in eruption behavior of lunar basaltic eruptions driven by magmatic volatiles. Finally, models of polar volatile behavior during impact-heating suggest that chemical alteration of minerals in the presence of liquid water is one possible outcome that was previously not thought possible on the Moon.

Contributors

Agent

Created

Date Created
  • 2016