Matching Items (8)
Filtering by

Clear all filters

134371-Thumbnail Image.png
Description

Sleep is imperative for health and wellness with direct impacts on brain function, physiology, emotional well-being, performance and safety when compromised. Adolescents and young adults are increasingly affected by factors affecting the maintenance of regular sleep schedules. College and university students are a potentially vulnerable population to sleep deprivation and

Sleep is imperative for health and wellness with direct impacts on brain function, physiology, emotional well-being, performance and safety when compromised. Adolescents and young adults are increasingly affected by factors affecting the maintenance of regular sleep schedules. College and university students are a potentially vulnerable population to sleep deprivation and sleep insufficiency. Possible factors that could contribute to poor sleep hygiene include, but are not limited to, academic pressures, social activities, and increased screen time. Arguably, students are still experiencing bone mineralization, until the age of 30 or even 40 years old, which makes it more important to understand the effects that altered sleep patterns could have on continued development of bone health. It is our understanding that to date, studies assessing the risk of sleep insufficiency on bone mineral density in college students have not been conducted. We hypothesized that college-aged students, between the ages of 18-25 years, with shorter sleep durations, greater sleep schedule variability, and poorer sleep environments will have significantly lower bone mineral density. ActiGraph monitoring, via a wrist ActiWatch was used to quantitatively measure sleep habits for up to 7 consecutive days. During the week-long study participants also captured their self-reported sleep data through the use of a sleep diary. Participants were measured one time within the study for bone mineral density of the lumbar spine and total hip through a dual energy x-ray absorptiometry. This was a preliminary analysis of a larger cross-sectional analysis looked at 17 participants, of which there were 14 females and 3 males, (n=5, 1 and 11 Hispanic, Black and White, respectively). The mean age of participants was 20.8±1.7 y with an average BMI of 22.9±3.2 kg/m2. ActiWatch measurement data showed a mean daily sleep duration of participants to be 437.5 ± 43.1 (372.5 – 509.4) minutes. Mean sleep efficiency (minutes of sleep divided by minutes of time in bed) and mean number of awakenings were 87.4±4.3 (75.4-93.4) minutes and 32.1±6.4 (22.3-42.7) awakenings, respectively. The median time for wake after sleep onset (WASO) was 34.5±10.5 (18.3-67.4) minutes. The mean bone mineral density (BMD) for the hips was 1.06±0.14 (0.81-1.28) g/cm2 with a mean BMD of the lumbar spine being 1.24±0.12 (0.92-1.43) g/cm2. Age-matched Z-scores of the hips was 0.31±0.96 (-1.6-2.1) and lumbar spine was 0.53 (IQR: 0.13, 0.98; -2.25-1.55). Neither sleep duration nor sleep efficiency was significantly correlated to BMD of either locations. While WASO was positively associated with hip and spine BMD, this value was not statistically significant in this population. Overall, associations between sleep and BMD of the femur and spine were not seen in this cohort. Further work utilizing a larger cohort will allow for control of covariates while looking for potential associations between bone health, sleep duration and efficiency.

ContributorsEsch, Patricia Rose (Author) / Whisner, Corrie (Thesis director) / Petrov, Megan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133668-Thumbnail Image.png
Description
The objective of the current study was to examine sleep and academic functioning during middle childhood. More specifically, the twin design was used to determine the heritability of academic competence and sleep. Phenotypic analyses using multi-level mixed model regressions were performed to predict academic functioning from sleep. Lastly, socioeconomic status

The objective of the current study was to examine sleep and academic functioning during middle childhood. More specifically, the twin design was used to determine the heritability of academic competence and sleep. Phenotypic analyses using multi-level mixed model regressions were performed to predict academic functioning from sleep. Lastly, socioeconomic status was tested as a moderator in the associations between sleep and academic functioning. Participants included twins (N = 191 families; Mage = 8.47 years) recruited from Arizona birth records at 12 months of age. Sleep duration, latency, onset, efficiency, variability, and sleep problems were assessed using actigraph watches and the Child Sleep Habits Questionnaire. Academic functioning was assessed using subtests of the Woodcock Johnson Cognitive Test of Achievement-IV (picture vocabulary, passage comprehension, and applied problems) and the MacArthur Health and Behavior Questionnaire. As determined by twin intraclass correlations, the heritability of academic competence ranged from 51-76%. Sleep heritability ranged from 14-80%. In addition, phenotypic analyses only showed a significant association between sleep latency and WJ picture vocabulary scores. More specifically, sleep latency was negatively associated with the picture vocabulary subtest. Additional models were run to examine if any interactive effects were present between early SES and the various sleep parameters. Several significant associations were observed with applied problems scores and parent-reported academic competence. Specifically, for children of low SES, a significant positive association was observed for sleep duration and WJ applied problems scores, as well as for sleep efficiency and WJ applied problems scores. No significant associations were observed for sleep efficiency and HBQ scores with children of any SES. Also, no significant relationships were observed with children of high SES for any of the academic measures.
ContributorsVakulskas, Emily (Author) / Doane, Leah (Thesis director) / Lemery-Chalfant, Kathryn (Committee member) / Breitenstein, Reagan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134101-Thumbnail Image.png
Description
Humans have greatly altered the night-time photic environment via the production of artificial light at night (ALAN; e.g. street lights, car traffic, billboards, lit buildings). ALAN is problematic because it may significantly alter the seasonal/daily physiological rhythms or behaviors of animals. There has been considerable interest in the impacts of

Humans have greatly altered the night-time photic environment via the production of artificial light at night (ALAN; e.g. street lights, car traffic, billboards, lit buildings). ALAN is problematic because it may significantly alter the seasonal/daily physiological rhythms or behaviors of animals. There has been considerable interest in the impacts of ALAN on health in humans and lab animals, but most such work has centered on adults and we know comparatively little about effects on young animals. We exposed 3-week-old king quail (Excalfactoria chinensis) to a constant overnight blue-light regime for 6 weeks and assessed weekly bactericidal activity of plasma against Escherichia coli - a commonly employed metric of innate immunity in animals. We found that chronic ALAN exposure significantly increased immune function, and that this elevation in immune performance manifested at different developmental time points in males and females. These results counter the pervasive notion that overnight light exposure is universally physiologically harmful to diurnal organisms and indicate that ALAN can provide sex-specific, short-term immunological boosts to developing animals.
ContributorsSaini, Chandan (Author) / McGraw, Kevin (Thesis director) / Hutton, Pierce (Committee member) / Sweazea, Karen (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
133747-Thumbnail Image.png
Description
Background Osteoporosis is a major health problem that can occur in people of all ages. It can stem from poor bone health during childhood and adolescence. It hinders independent living, impacts social living, reduces participation in physical activity, and increases risk of fractures and physical pain. In addition to age,

Background Osteoporosis is a major health problem that can occur in people of all ages. It can stem from poor bone health during childhood and adolescence. It hinders independent living, impacts social living, reduces participation in physical activity, and increases risk of fractures and physical pain. In addition to age, gender, race, physical activity and diet, sleep is considered to be a risk factor in the development of osteoporosis in both the young and elderly population. Bone-specific alkaline phosphatase, a bone formation biomarker was measured to determine osteoporotic risk while an actigraphy device was used to measure sleep efficiency in college students. Objective The purpose of this study is to evaluate the relationship between sleep efficiency and bone-specific alkaline phosphatase levels. Recognition of any association may help in understanding how sleep is related to bone health. Methods Twenty-seven participants were recruited with the use of flyers distributed on campus and in residential halls, social media, email, and student newsletters. Bone-specific alkaline phosphatase biomarker was measured using human specific enzyme-linked immunosorbent assay (ELISA). Sleep data were collected from participants who wore ActiWatch for 7 days and completed a 7-night sleep diary. Linear and multiple regression analysis were performed to evaluate association between B-ALP (outcome) and sleep efficiency while adjusting for covariates (age, BMI, race, gender). Results and Conclusions Overall, there was no significant association between sleep efficiency and bone-specific alkaline phosphatase. Gender, however, showed a significant influence on the levels of bone-alkaline phosphatase. This is supported by a study that found higher bone turnover marker in males than in females. The result from the study could be due to limitations such as small sample size. More participants may provide a better comparison or association between variables. Genetic factors are believed to influence the outcome of the study as genetics can influence rate of bone loss or formation. Findings may be beneficial for public health and policy initiatives and allow health / nutrition educators to more adequately encourage proper habits such as physical activity, healthy diet and sufficient sleep for good bone health.
ContributorsLadipo, Evelyn Irawola (Author) / Whisner, Corrie (Thesis director) / Mahmood, Tara (Committee member) / School of Life Sciences (Contributor) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134961-Thumbnail Image.png
Description
There are two electrophysiological states of sleep in birds (rapid-eye-movement sleep [REM] and slow-wave sleep [SWS]), which have different functions and costs. REM improves memory consolidation, while SWS is neuro-restorative but also exposes the animal to more risk during this deep-sleep phase. Birds who sleep in more exposed microsites are known

There are two electrophysiological states of sleep in birds (rapid-eye-movement sleep [REM] and slow-wave sleep [SWS]), which have different functions and costs. REM improves memory consolidation, while SWS is neuro-restorative but also exposes the animal to more risk during this deep-sleep phase. Birds who sleep in more exposed microsites are known to invest proportionally less in SWS (presumably to ensure proper vigilance), but otherwise little else is known about the ecological or behavioral predictors of how much time birds devote to REM v. SWS sleep. In this comparative analysis, we examine how proportional time spent in SWS v. REM is related to brain mass and duration of the incubation period in adults. Brain mass and incubation period were chosen as predictors of sleep state investment because brain mass is positively correlated with body size (and may show a relationship between physical development and sleep) and incubation period can be a link used to show similarities and differences between birds and mammals (using mammalian gestation period). We hypothesized that (1) species with larger brains (relative to body size and also while controlling for phylogeny) would have higher demands for information processing, and possibly proportionally outweigh neuro-repair, and thus devote more time to REM and that (2) species with longer incubation periods would have proportionally more REM due to the extended time required for overnight predator vigilance (and not falling into deep sleep) while on the nest. We found, using neurophysiological data from literature on 27 bird species, that adults from species with longer incubation periods spent proportionally more time in REM sleep, but that relative brain size was not significantly associated with relative time spent in REM or SWS. We therefore provide evidence that mammalian and avian REM in response to incubation/gestation period have convergently evolved. Our results suggest that overnight environmental conditions (e.g. sleep site exposure) might have a greater effect on sleep parameters than gross morphological attributes.
ContributorsRaiffe, Joshua Sapell (Author) / McGraw, Kevin (Thesis director) / Deviche, Pierre (Committee member) / Hutton, Pierce (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description

Survivors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) often experience chronic symptoms that include fatigue, shortness of breath, and brain fog. The collection of ongoing post-COVID-19 symptoms have been classified as Post-Acute Sequela of SARS-CoV-2 (PASC). Older adult patients are especially susceptible to experiencing PASC related complications and have

Survivors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) often experience chronic symptoms that include fatigue, shortness of breath, and brain fog. The collection of ongoing post-COVID-19 symptoms have been classified as Post-Acute Sequela of SARS-CoV-2 (PASC). Older adult patients are especially susceptible to experiencing PASC related complications and have a high risk for long-term cognitive impairment symptoms. Definitions for categorizing PASC- associated cognitive impairment and neuropsychological assessments used to evaluate cognitive impairment are inconsistent between studies examining older adults. This systematic review aims to identify which neuropsychological tests best identify cognitive impairments associated with PASC and suggest a guide to standardize the measurement of PASC-related cognitive impairments. Through a literature search using PubMed, we included within this review 14 studies that fulfilled our inclusion and exclusion criteria evaluating middle-aged and older adult populations affected by PASC-associated cognitive impairments. The majority of the studies used tests designed to screen for general cognitive function to test for the prevalence of cognitive impairment, with the most common one being Montreal Cognitive Assessment (MoCA), followed by MMSE and TICS. MoCA reported the highest prevalence of the general cognitive screeners which suggests higher sensitivity and specificity. Telephone Interview for Cognitive Status (TICS) demonstrated similar scores as MoCA despite administration being remote while MMSE identified the lowest prevalence. Four studies also used domain-specific cognitive evaluations and reported instances of cognitive impairment in individuals who had previously tested healthy. Furthermore, the results gathered in this review were stratified based on disease symptom severity. This review identifies MoCA to be better suited for evaluating general cognitive impairment in older adults. TICS has the added utility in being able to access a wider range of older adults through remote screening. Disease severity must be clearly defined to allow better comparisons between studies and allow for standardization. Early identification of PASC-associated cognitive impairment in middle-aged and older adults can be performed using general cognitive function evaluations and administering a baseline cognitive evaluation one month after infection is suggested.

ContributorsCuc, Nicklus (Author) / Ng, Ted (Thesis director) / Maxfield, Molly (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor)
Created2023-05
132556-Thumbnail Image.png
Description
The purpose of this study was to examine the overall maintenance of behavior during the 12 to 24 month period of the ​Stand&Move@Work​ study and the impact of implementation factors (i.e., facilitators, advocate activity, and the amount of strategies used) on behavior change. The design of the study was a

The purpose of this study was to examine the overall maintenance of behavior during the 12 to 24 month period of the ​Stand&Move@Work​ study and the impact of implementation factors (i.e., facilitators, advocate activity, and the amount of strategies used) on behavior change. The design of the study was a cluster randomized trial which was facilitated by researchers for the first 12 months of the study. The primary aim of the study was to examine the maintenance of behavior change (i.e., sitting time) at the 12 month and 24 month marks using objectively measured sedentary behavior (activPAL micro). The secondary aim of the study was to examine the impact of implementation factors (i.e., facilitators, advocate activity, and the amount of strategies used) on behavior change during the 12 through 24 months maintenance period. Participants (N=630) included full-time, caucasian, middle-aged office workers. For the primary aim, descriptive means were used to cluster for observations within-persons and were adjusted for age, gender, race, job-type, and ordering effects.. For the secondary aim, descriptive means adjusted for workplace culture and environment were computed. At the 24 month mark, participants spent 280.67 ± 87.67 min/8hr workday sitting and 161.94 ± 85.87 min/8hr workday standing. The top performing worksites displayed reductions in sitting time which largely translated into standing time by about 30 minutes per 8 hour workday at 24 months. Feasibility findings indicated that implementation strategies do not show differences between the top 25% and bottom 25% performing worksites. This study provides insight to implementation strategies for interventions in the workplace.
ContributorsTong, Alyssa Taylor (Author) / Buman, Matthew (Thesis director) / Larouche, Miranda (Committee member) / Estabrooks, Paul (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
158370-Thumbnail Image.png
Description
This body of research sought to explore relationships between cognitive function and physical activity (PA), sedentary behavior (SB), and sleep, independently and in conjunction, in mid-life to older adults with no known cognitive impairment. Aging is associated with cognitive decline, and lifestyle behaviors such as PA, SB, and sleep, may

This body of research sought to explore relationships between cognitive function and physical activity (PA), sedentary behavior (SB), and sleep, independently and in conjunction, in mid-life to older adults with no known cognitive impairment. Aging is associated with cognitive decline, and lifestyle behaviors such as PA, SB, and sleep, may mitigate this decline. First, a systematic review and meta-analysis was conducted to examine the effect of aerobic PA interventions on memory and executive function in sedentary adults. Second, a longitudinal study was conducted to examine the association between SB and odds of incident cognitive impairment, and SB and cognitive decline in older adults. Last, a cross-sectional study was conducted to examine the joint associations between different levels of sleep with levels of PA, and sleep with levels of sedentary time on memory and executive function. This body of research provided evidence to support the association between aerobic PA and improved cognitive function, SB and incident cognitive impairment and cognitive function declines, and the joint association of sleep and different levels of PA and ST on cognitive function by hypertension status.
ContributorsHoffmann, Nicole M (Author) / Lee, Rebecca E (Thesis advisor) / Petrov, Megan E (Thesis advisor) / Marek, Karen (Committee member) / Arizona State University (Publisher)
Created2020