Matching Items (14)
Filtering by

Clear all filters

Description
Since the acceptance of Einstein's special theory of relativity by the scientific community, authors of science fiction have used the concept of time dilation to permit seemingly impossible feats. Simple spacecraft acceleration schemes involving time dilation have been considered by scientists and fiction writers alike. Using an original Java program

Since the acceptance of Einstein's special theory of relativity by the scientific community, authors of science fiction have used the concept of time dilation to permit seemingly impossible feats. Simple spacecraft acceleration schemes involving time dilation have been considered by scientists and fiction writers alike. Using an original Java program based upon the differential equations for special relativistic kinematics, several scenarios for round trip excursions at relativistic speeds are calculated and compared, with particular attention to energy budget and relativistic time passage in all relevant frames.
ContributorsAlfson, Jonathan William (Author) / Jacob, Richard (Thesis director) / Covatto, Carl (Committee member) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
137466-Thumbnail Image.png
Description
Dry and steam NanoBonding™ are conceived and researched to bond Si-based surfaces, via nucleation and growth of a two-dimensional SiOxHy or hydrated SiOxHy interphase connecting surfaces at the nanoscale across macroscopic domains. The motivation is to create strong, long lasting, hermetically bonded sensors with their electronics for the development

Dry and steam NanoBonding™ are conceived and researched to bond Si-based surfaces, via nucleation and growth of a two-dimensional SiOxHy or hydrated SiOxHy interphase connecting surfaces at the nanoscale across macroscopic domains. The motivation is to create strong, long lasting, hermetically bonded sensors with their electronics for the development of an artificial pancreas and to bond solar cells to glass panels for robust photovoltaic technology. The first step in NanoBonding™ is to synthesize smooth surfaces with 20 nm wide atomic terraces via a precursor phase, ß-cSiO2 on Si(100) and oxygen-deficient SiOx on the silica using the Herbots-Atluri process and Entrepix’s spin etching. Smooth precursor phases act as geometric and chemical template to nucleate and grow macroscopic contacting domains where cross bridging occurs via arrays of molecular strands in the hydrated SiOxHy interphase. Steam pressurization is found to catalyze NanoBonding™ consistently, eliminating the need for direct mechanical compression that limits the size and shape of wafers to be bonded in turn, reducing the cost of processing. Total surface energy measurements via 3 Liquids Contact Angle Analysis (3L CAA) enables accurate quantitative analysis of the total surface energy and each of its components. 3L CAA at each step in the process shows that surface energy drops to 42.4 ± 0.6 mJ/m2 from 57.5 ± 1.4 mJ/m2 after the Herbots-Atluri clean of an “As Received” wafer. 3L CAA after steam pressurization Nanobonding™ shows almost complete elimination from 13.8 mJ/m2 ± 1.0 to 0.002 ±- 0.0002 mJ/m2 in the contribution of acceptors to the total free surface energy, and an increase from 0.2 ± .03 to 23.8± 1.6 mJ/m2 in the contribution of donors. This is consistent with an increase in hydroxylation of the ß-cSiO2 surface as a consistent precursor phase for cross-bridging. This research optimizes the use of glycerin, water, and α-bromo-naphtalene in the use of 3L CAA to effectively quantify the components of total free surface energy which helps to better understand the most consistent method for NanoBonding™.
ContributorsBennett-Kennett, Ross Buchanan (Author) / Culbertson, Robert (Thesis director) / Herbots, Nicole (Committee member) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / Department of Physics (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2013-05
134998-Thumbnail Image.png
Description
Because of its massive nature and simple two-body structure, the heavy meson bottomonium (the flavorless bound state of the bottom quark and anti-quark) is among the simplest systems available for the study of the strong force and quantum chromodynamics (QCD)—a feature which has made it of special interest to particle

Because of its massive nature and simple two-body structure, the heavy meson bottomonium (the flavorless bound state of the bottom quark and anti-quark) is among the simplest systems available for the study of the strong force and quantum chromodynamics (QCD)—a feature which has made it of special interest to particle physicists.

Despite being bound by the strong force, bottomonium exhibits a rich spectrum of resonances corresponding to excited states extremely analogous to that of positronium or even familiar atomic systems. Transitions between these levels are possible via the absorption or emission of either a photon, gluon, or gluons manifesting as light hadrons. The goal of this thesis was to establish a theoretical value for the currently unmeasured partial decay width for one such transition—the electromagnetic decay channel hb -> etab gamma. To this end, two methods were utilized.

The first approach relied on the presumption of a nonrelativistic constituent quark model interacting via a simple static potential, allowing for radial wave functions and energy eigenvalues to be obtained for the states of interest via the Schrödinger equation. Upon an application of the standard electromagnetic multipole expansion followed by a utilization of the electric dipole E1 decay width formula, a value of 57.7 ± 0.4 keV was obtained.

The second approach stemmed from the effective Lagrangian describing the bottomonium P to S electromagnetic transitions and relied on the presumption that a single coupling constant could be approximated as describing all nP to mS transitions regardless of spin. A value for this coupling constant could then be extracted from the 1P to 1S spin triplet data and used to predict the width for the singlet 1P to 1S transition. The partial decay width value found in this manner was 47.8 ± 2.0 keV.

Various other methods and models have established a predicted range of 35 to 60 keV for this partial decay width. As the values determined in this thesis fall within the expected range, they agree well with our current understanding of this electromagnetic transition and place further confidence on the expected range.
ContributorsIreland, Aurora Nicole (Author) / McCartney, Martha (Thesis director) / Foy, Joseph (Committee member) / Maximon, Leonard (Committee member) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
147894-Thumbnail Image.png
Description

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum paradigm is upheld through analysis and the subsequent Aspect experiments in the years 1980-1982. No matter the complexity, any local hidden variable theory is incompatible with the formulation of standard quantum mechanics. A number of strikingly ambiguous and abstract concepts are addressed in this pursuit to deduce quantum's validity, including separability and reality. `Elements of reality' characteristic of unique spaces are defined using basis terminology and logic from EPR. The discussion draws directly from Bell's succinct 1964 Physics 1 paper as well as numerous other useful sources. The fundamental principle and insight gleaned is that quantum physics is indeed nonlocal; the door into its metaphysical and philosophical implications has long since been opened. Yet the nexus of information pertaining to Bell's inequality and EPR logic does nothing but assert the impeccable success of quantum physics' ability to describe nature.

ContributorsRapp, Sean R (Author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148333-Thumbnail Image.png
Description

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal why interpretations are necessary to map the quantum world onto our classical world. We then introduce the Copenhagen interpretation, and how many-worlds differs from it. From there, we dive into the concepts of entanglement and decoherence, explaining how worlds branch in an Everettian universe, and how an Everettian universe can appear as our classical observed world. From there, we attempt to answer common questions about many-worlds and discuss whether there are philosophical ramifications to believing such a theory. Finally, we look at whether the many-worlds interpretation can be proven, and why one might choose to believe it.

ContributorsSecrest, Micah (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148341-Thumbnail Image.png
Description

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the behavior of electrons whose combined internal angular momentum is zero. This paper will go over Dr. Bell's famous inequality, which shows why the process of entanglement cannot be explained by traditional means of local processes. Entanglement will be viewed initially through the Copenhagen Interpretation, but this paper will also look at two particular models of quantum mechanics, de-Broglie Bohm theory and Everett's Many-Worlds Interpretation, and observe how they explain the behavior of spin and entangled particles compared to the Copenhagen Interpretation.

ContributorsWood, Keaten Lawrence (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147783-Thumbnail Image.png
Description

This paper analyzes the history and impact of the double-slit experiment on the world of physics. The experiment was initially created by Thomas Young in the early nineteenth century to prove that light behaved as a wave, and the experiment’s findings ended up being foundational to the classical wave theory

This paper analyzes the history and impact of the double-slit experiment on the world of physics. The experiment was initially created by Thomas Young in the early nineteenth century to prove that light behaved as a wave, and the experiment’s findings ended up being foundational to the classical wave theory of light. Decades later, the experiment was replicated once more with electrons instead of light and shockingly demonstrated that electrons possessed a dual nature of behavior in that they acted in some instances as particles and in others as waves. Despite numerous modifications and replications, the dual behavior of electrons has never been definitively explained. Numerous interpretations of quantum mechanics all offer their own explanations of the double-slit experiment’s results. Notably, the Copenhagen Interpretation states that an observer measuring a quantum system, such as the double-slit experiment, causes the electrons to behave classically (i.e. as a particle.) The Many Worlds Interpretation offers that multiple branching worlds come into existence to represent the physical occurrence of all probable outcomes of the double-slit experiment. In these and other interpretations, explanations of the double-slit experiment are key to proving their respective dogmas. The double-slit experiment has historically been very important to the worlds of both classical and quantum physics and is still being modified and replicated to this day. It is clear that it will continue to remain relevant even in the future of physics.

ContributorsRodriguez, Zachary M (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
DescriptionThis project covers the history and background of the phenomenon in quantum physics known as quantum entanglement. The paper then describes the experiments done by the 2022 Nobel Prize winners on entangled particles and the possible real-world applications of such research.
ContributorsHossain, Tasnia (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

With the extreme strides taken in physics in the early twentieth century, one of the biggest questions on the minds of scientists was what this new branch of quantum physics would be able to be used for. The twentieth century saw the rise of computers as devices that significantly aided

With the extreme strides taken in physics in the early twentieth century, one of the biggest questions on the minds of scientists was what this new branch of quantum physics would be able to be used for. The twentieth century saw the rise of computers as devices that significantly aided in calculations and performing algorithms. Because of the incredible success of computers and all of the groundbreaking possibilities that they afforded, research into using quantum mechanics for these systems was proposed. Although theoretical at the time, it was found that a computer that had the ability to leverage quantum mechanics would be far superior to any classical machine. This sparked a wave of interest in research and funding in this exciting new field. General-use quantum computers have the potential to disrupt countless industries and fields of study, like physics, medicine, engineering, cryptography, finance, meteorology, climatology, and more. The supremacy of quantum computers has not yet been reached, but the continued funding and research into this new technology ensures that one day humanity will be able to unlock the full potential of quantum computing.

ContributorsEaton, Jacob (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
165054-Thumbnail Image.png
Description

In 1757 Edmund Burke published A Philosophical Enquiry into the Sublime and Beautiful. I will be extending his analysis of the sublime and beautiful, and using it to dissect quantum mechanics. Using Burke’s template on the sublime and beautiful, I can evaluate experiments in quantum mechanics, and explore a new

In 1757 Edmund Burke published A Philosophical Enquiry into the Sublime and Beautiful. I will be extending his analysis of the sublime and beautiful, and using it to dissect quantum mechanics. Using Burke’s template on the sublime and beautiful, I can evaluate experiments in quantum mechanics, and explore a new side of Burke’s aesthetic theory. For the reader, I have outlined Burke’s aesthetic theory on the sublime and beautiful. I then used this analysis to explore quantum mechanics and assess the components of quantum mechanics that are beautiful and sublime.

ContributorsManrique, Scarlett (Author) / Taylor, Thomas (Thesis director) / Foy, Joseph (Committee member) / Boyce-Jacino, Katherine (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / Department of Finance (Contributor)
Created2022-05