Matching Items (11)

Filtering by

Clear all filters

135841-Thumbnail Image.png

Addressing Childhood Trauma in the Classroom

Description

Over the past few years, the issue of childhood trauma in the United States has become significant. A growing number of children are experiencing abuse, neglect, or some other form of maltreatment each year. Considering the stressful home lives of

Over the past few years, the issue of childhood trauma in the United States has become significant. A growing number of children are experiencing abuse, neglect, or some other form of maltreatment each year. Considering the stressful home lives of maltreated children, the one sure sanctuary is school. However, this idea requires teachers to be actively involved in identifying and caring for the children who need it most. Traumatic childhood experiences leave lasting scars on its victims, so it is helpful if teachers learn how to identify and support children who have lived through them. It is unfortunate that teachers will most likely encounter children throughout their career who have experienced horrendous things, but it is a reality. With this being said, teachers need to develop an understanding of what traumatized children live with, and learn how to address these issues with skilled sensitivity. Schools are not just a place where children learn how to read and write; they build the foundation for a successful life. This project was designed to provide teachers with a necessary resource for helping children who have suffered traumatic experiences. The methodology of this project began with interviews with organizations specializing in working with traumatized children such as Arizonans for Children, Free Arts for Abused Children, The Sojourner Center, and UMOM. The next step was a review of the current literature on the subject of childhood trauma. The findings have all been compiled into one, convenient document for teacher use and distribution. Upon completion of this document, an interactive video presentation will be made available through an online education website, so that distribution will be made simpler. Hopefully, teachers will share the information with people in their networks and create a chain reaction. The goal is to make it available to as many teachers as possible, so that more children will receive the support they need.

Contributors

Created

Date Created
2016-05

136610-Thumbnail Image.png

Rolling Down Ramps: A Unit Plan to Address the Urgent Need of STEM Instruction in Preschool

Description

STEM education stands for science, technology, engineering and mathematics, and is necessary for students to keep up with global competition in the changing job market, technological advancements and challenges of the future. However, American students are lacking STEM achievement at

STEM education stands for science, technology, engineering and mathematics, and is necessary for students to keep up with global competition in the changing job market, technological advancements and challenges of the future. However, American students are lacking STEM achievement at the state, national and global levels. To combat this lack of achievement I propose that STEM instruction should begin in preschool, be integrated into the curriculum and be inquiry based. To support this proposal I created a month-long physics unit for preschoolers in a Head Start classroom. Students investigated the affect of incline, friction and weight on the distance of a rolling object, while developing their pre-math, pre-literacy and social emotional skills.

Contributors

Agent

Created

Date Created
2015-05

131608-Thumbnail Image.png

Determination of Renal Stone Composition with Dual-Energy CT

Description

This research evaluates the capabilities of typical radiological measures and dual-energy systems to differentiate common kidney stones materials: uric acid, oxalates, phosphates, struvite, and cystine. Two different X-ray spectra (80 kV and 120 kV) were applied and the dual-energy ratio

This research evaluates the capabilities of typical radiological measures and dual-energy systems to differentiate common kidney stones materials: uric acid, oxalates, phosphates, struvite, and cystine. Two different X-ray spectra (80 kV and 120 kV) were applied and the dual-energy ratio of individual kidney stones was used to figure out the discriminability of different materials. A CT cross-section with a prospective kidney stone was analyzed to see the capabilities of such a technique. Typical radiological measures suggested that phosphates and oxalate stones can be distinguished from uric acid stones while dual-energy seemed to prove similar effectiveness.

Contributors

Agent

Created

Date Created
2020-05

150343-Thumbnail Image.png

Nano-bonding of silicon oxides-based surfaces at low temperature: bonding interphase modeling via molecular dynamics and characterization of bonding surfaces topography, hydro-affinity and free energy

Description

In this work, a new method, "Nanobonding" [1,2] is conceived and researched to bond Si-based surfaces, via nucleation and growth of a 2 D silicon oxide SiOxHx interphase connecting the surfaces at the nanoscale across macroscopic domains. Nanobonding cross-bridges two

In this work, a new method, "Nanobonding" [1,2] is conceived and researched to bond Si-based surfaces, via nucleation and growth of a 2 D silicon oxide SiOxHx interphase connecting the surfaces at the nanoscale across macroscopic domains. Nanobonding cross-bridges two smooth surfaces put into mechanical contact in an O2/H2O mixed ambient below T <200 °C via arrays of SiOxHx molecules connecting into a continuous macroscopic bonding interphase. Nano-scale surface planarization via wet chemical processing and new spin technology are compared via Tapping Mode Atomic Force Microscopy (TMAFM) , before and after nano-bonding. Nanobonding uses precursor phases, 2D nano-films of beta-cristobalite (beta-c) SiO2, nucleated on Si(100) via the Herbots-Atluri (H-A) method [1]. beta-c SiO2 on Si(100) is ordered and flat with atomic terraces over 20 nm wide, well above 2 nm found in native oxides. When contacted with SiO2 this ultra-smooth nanophase can nucleate and grow domains with cross-bridging molecular strands of hydroxylated SiOx, instead of point contacts. The high density of molecular bonds across extended terraces forms a strong bond between Si-based substrates, nano- bonding [2] the Si and silica. A new model of beta-cristobalite SiO2 with its <110> axis aligned along Si[100] direction is simulated via ab-initio methods in a nano-bonded stack with beta-c SiO2 in contact with amorphous SiO2 (a-SiO2), modelling cross-bridging molecular bonds between beta-c SiO2 on Si(100) and a-SiO2 as during nanobonding. Computed total energies are compared with those found for Si(100) and a-SiO2 and show that the presence of two lattice cells of !-c SiO2 on Si(100) and a-SiO2 lowers energy when compared to Si(100)/ a-SiO2 Shadow cone calculations on three models of beta-c SiO2 on Si(100) are compared with Ion Beam Analysis of H-A processed Si(100). Total surface energy measurements via 3 liquid contact angle analysis of Si(100) after H-A method processing are also compared. By combining nanobonding experiments, TMAFM results, surface energy data, and ab-initio calculations, an atomistic model is derived and nanobonding is optimized. [1] US Patent 6,613,677 (9/2/03), 7,851,365 (12/14/10), [2] Patent Filed: 4/30/09, 10/1/2011

Contributors

Agent

Created

Date Created
2011

150307-Thumbnail Image.png

Raman spectroscopy characterization of anharmonicity and alloying effects in semiconductor materials

Description

The chemical sensitivity and spatial resolution of Raman spectroscopy, combined with the sensitivity of modern systems that can easily detect single atomic layers, have made this technique a preferred choice for the strain characterization of complex systems such as nanoscale

The chemical sensitivity and spatial resolution of Raman spectroscopy, combined with the sensitivity of modern systems that can easily detect single atomic layers, have made this technique a preferred choice for the strain characterization of complex systems such as nanoscale complementary metal-oxide-semiconductor - CMOS - devices. A disadvantage of Raman spectroscopy, however, is that the shifts associated with strain are not related to the geometrical deformations in any obvious way, so that careful calibrations are needed to determine the anharmonic coefficients (p, q and r) that relate strain to Raman shifts. A new set of measurements of the Raman shift in strained Ge films grown on relaxed SiGe buffer layers deposited on Si substrates is presented, and thereby, a new consistent set of values for the parameters p and q for Ge has been proposed. In this dissertation the study of the vibrational properties of Ge1-xSnx alloys has also been reported. The temperature dependence of the Raman spectrum of Ge-rich Ge1-x Snx and Ge1-x-ySi xSny alloys has been determined in the 10 K - 450 K range. The Raman line shift and width changes as a function of temperature are found to be virtually identical to those observed in bulk Ge. This result shows that the anharmonic decay process responsible for the temperature dependence is extremely robust against the alloy perturbation.

Contributors

Agent

Created

Date Created
2011

150485-Thumbnail Image.png

Models for amorphous calcium carbonate

Description

Many species e.g. sea urchin form amorphous calcium carbonate (ACC) precursor phases that subsequently transform into crystalline CaCO3. It is certainly possible that the biogenic ACC might have more than 10 wt% Mg and ∼ 3 wt% of water. The

Many species e.g. sea urchin form amorphous calcium carbonate (ACC) precursor phases that subsequently transform into crystalline CaCO3. It is certainly possible that the biogenic ACC might have more than 10 wt% Mg and ∼ 3 wt% of water. The structure of ACC and the mechanisms by which it transforms to crystalline phase are still poorly understood. In this dissertation our goal is to determine an atomic structure model that is consistent with diffraction and IR measurements of ACC. For this purpose a calcite supercell with 24 formula units, containing 120 atoms, was constructed. Various configurations with substitution of Ca by 6 Mg ions (6 wt.%) and insertion of 3-5 H2O molecules (2.25-3.75 wt.%) in the interstitial positions of the supercell, were relaxed using a robust density function code VASP. The most noticeable effects were the tilts of CO3 groups and the distortion of Ca sub-lattice, especially in the hydrated case. The distributions of Ca-Ca nearest neighbor distance and CO3 tilts were extracted from various configurations. The same methods were also applied to aragonite. Sampling from the calculated distortion distributions, we built models for amorphous calcite/aragonite of size ∼ 1700 nm3 based on a multi-scale modeling scheme. We used these models to generate diffraction patterns and profiles with our diffraction code. We found that the induced distortions were not enough to generate a diffraction profile typical of an amorphous material. We then studied the diffraction profiles from several nano-crystallites as recent studies suggest that ACC might be a random array of nanocryatallites. It was found that the generated diffraction profile from a nano-crystallite of size ∼ 2 nm3 is similar to that from the ACC.

Contributors

Agent

Created

Date Created
2012

149608-Thumbnail Image.png

The effect of material properties on energy resolution in gamma-ray detectors

Description

Nuclear proliferation concerns have resulted in a desire for radiation detectors with superior energy resolution. In this dissertation a Monte Carlo code is developed for calculating energy resolution in gamma-ray detector materials. The effects of basic material properties such

Nuclear proliferation concerns have resulted in a desire for radiation detectors with superior energy resolution. In this dissertation a Monte Carlo code is developed for calculating energy resolution in gamma-ray detector materials. The effects of basic material properties such as the bandgap and plasmon resonance energy are studied using a model for inelastic electron scattering based on electron energy-loss spectra. From a simplified "toy model" for a generic material, energy resolution is found to oscillate as the plasmon resonance energy is increased, and energy resolution can also depend on the valence band width. By incorporating the model developed here as an extension of the radiation transport code Penelope, photon processes are also included. The enhanced version of Penelope is used to calculate the Fano factor and average electron-hole pair energy in semiconductors silicon, gallium arsenide, zinc telluride, and scintillators cerium fluoride and lutetium oxyorthosilicate (LSO). If the effects of the valence band density-of-states and phonon scattering are removed, the calculated energy-resolution for these materials is fairly close to that for a toy model with a uniform electron energy-loss probability density function. This implies that the details of the electron cascade may in some cases have only a marginal effect on energy resolution.

Contributors

Agent

Created

Date Created
2011

151589-Thumbnail Image.png

Zeolites: structural properties and benchmarks of feasibility

Description

Zeolites are a class of microporous materials that are immensely useful as molecular sieves and catalysts. While there exist millions of hypothetical zeolite topologies, only 206 have been recognized to exist in nature, and the question remains: What distinguishes known

Zeolites are a class of microporous materials that are immensely useful as molecular sieves and catalysts. While there exist millions of hypothetical zeolite topologies, only 206 have been recognized to exist in nature, and the question remains: What distinguishes known zeolite topologies from their hypothetical counterparts? It has been found that all 206 of the known zeolites can be represented as networks of rigid perfect tetrahedra that hinge freely at the connected corners. The range of configurations over which the corresponding geometric constraints can be met has been termed the "flexibility window". Only a small percentage of hypothetical types exhibit a flexibility window, and it is thus proposed that this simple geometric property, the existence of a flexibility window, provides a reliable benchmark for distinguishing potentially realizable hypothetical structures from their infeasible counterparts. As a first approximation of the behavior of real zeolite materials, the flexibility window provides additional useful insights into structure and composition. In this thesis, various methods for locating and exploring the flexibility window are discussed. Also examined is the assumption that the tetrahedral corners are force-free. This is a reasonable approximation in silicates for Si-O-Si angles above ~135°. However, the approximation is poor for germanates, where Ge-O-Ge angles are constrained to the range ~120°-145°. Lastly, a class of interesting low-density hypothetical zeolites is evaluated based on the feasibility criteria introduced.

Contributors

Agent

Created

Date Created
2013

153378-Thumbnail Image.png

Fluctuation electron microscopy of amorphous and polycrystalline materials

Description

Fluctuation Electron Microscopy (FEM) has become an effective materials' structure characterization technique, capable of probing medium-range order (MRO) that may be present in amorphous materials. Although its sensitivity to MRO has been exercised in numerous studies, FEM is not yet

Fluctuation Electron Microscopy (FEM) has become an effective materials' structure characterization technique, capable of probing medium-range order (MRO) that may be present in amorphous materials. Although its sensitivity to MRO has been exercised in numerous studies, FEM is not yet a quantitative technique. The holdup has been the discrepancy between the computed kinematical variance and the experimental variance, which previously was attributed to source incoherence. Although high-brightness, high coherence, electron guns are now routinely available in modern electron microscopes, they have not eliminated this discrepancy between theory and experiment. The main objective of this thesis was to explore, and to reveal, the reasons behind this conundrum.

The study was started with an analysis of the speckle statistics of tilted dark-field TEM images obtained from an amorphous carbon sample, which confirmed that the structural ordering is sensitively detected by FEM. This analysis also revealed the inconsistency between predictions of the source incoherence model and the experimentally observed variance.

FEM of amorphous carbon, amorphous silicon and ultra nanocrystalline diamond samples was carried out in an attempt to explore the conundrum. Electron probe and sample parameters were varied to observe the scattering intensity variance behavior. Results were compared to models of probe incoherence, diffuse scattering, atom displacement damage, energy loss events and multiple scattering. Models of displacement decoherence matched the experimental results best.

Decoherence was also explored by an interferometric diffraction method using bilayer amorphous samples, and results are consistent with strong displacement decoherence in addition to temporal decoherence arising from the electron source energy spread and energy loss events in thick samples.

It is clear that decoherence plays an important role in the long-standing discrepancy between experimental FEM and its theoretical predictions.

Contributors

Agent

Created

Date Created
2015

156600-Thumbnail Image.png

Microstructure of BAlN and InGaN epilayers for optoelectronic applications

Description

In this dissertation, various characterization techniques have been used to investigate many aspects of the properties of III-nitride materials and devices for optoelectronic applications.

The first part of this work is focused on the evolution of microstructures of BAlN thin

In this dissertation, various characterization techniques have been used to investigate many aspects of the properties of III-nitride materials and devices for optoelectronic applications.

The first part of this work is focused on the evolution of microstructures of BAlN thin films. The films were grown by flow-modulated epitaxy at 1010 oC, with B/(B+Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09, while Rutherford backscattering spectrometry (RBS) measures x = 0.06 to 0.16. Transmission electron microscopy indicates the sole presence of the wurtzite crystal structure in the BAlN films, and a tendency towards twin formation and finer microstructure for B/(B+Al) gas-flow ratios greater than 0.15. The RBS data suggest that the incorporation of B is highly efficient, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films. It has also located point defects in the films with nanometer resolution. The defects are identified as B and Al interstitials and N vacancies by comparison of the observed energy thresholds with results of density functional theory calculations.

The second part of this work investigates dislocation clusters observed in thick InxGa1-xN films with 0.07 ≤ x ≤ 0.12. The clusters resemble baskets with a higher indium content at their interior. Threading dislocations at the basket boundaries are of the misfit edge type, and their separation is consistent with misfit strain relaxation due the difference in indium content between the baskets and the surrounding matrix. The base of the baskets exhibits no observable misfit dislocations connected to the threading dislocations, and often no net displacements like those due to stacking faults. It is argued that the origin of these threading dislocation arrays is associated with misfit dislocations at the basal plane that dissociate, forming stacking faults. When the stacking faults form simultaneously satisfying the crystal symmetry, the sum of their translation vectors does add up to zero, consistent with our experimental observations.

Contributors

Agent

Created

Date Created
2018