Matching Items (12)
Filtering by

Clear all filters

151412-Thumbnail Image.png
Description
The theory of quantum electrodynamics predicts that beta decay of the neutron into a proton, electron, and anti-neutrino should be accompanied by a continuous spectrum of photons. A recent experiment, RDK I, reported the first detection of radiative decay photons from neutron beta decay with a branching ratio of (3.09

The theory of quantum electrodynamics predicts that beta decay of the neutron into a proton, electron, and anti-neutrino should be accompanied by a continuous spectrum of photons. A recent experiment, RDK I, reported the first detection of radiative decay photons from neutron beta decay with a branching ratio of (3.09 ± 0.32) × 10-3 in the energy range of 15 keV to 340 keV. This was achieved by prompt coincident detection of an electron and photon, in delayed coincidence with a proton. The photons were detected by using a single bar of bismuth germanate scintillating crystal coupled to an avalanche photodiode. This thesis deals with the follow-up experiment, RDK II, to measure the branching ratio at the level of approximately 1% and the energy spectrum at the level of a few percent. The most significant improvement of RDK II is the use of a photon detector with about an order of magnitude greater solid angle coverage than RDK I. In addition, the detectable energy range has been extended down to approximately 250 eV and up to the endpoint energy of 782 keV. This dissertation presents an overview of the apparatus, development of a new data analysis technique for radiative decay, and results for the ratio of electron-proton-photon coincident Repg to electron-proton coincident Rep events.
ContributorsO'Neill, Benjamin (Author) / Alarcon, Ricardo (Thesis advisor) / Drucker, Jeffery (Committee member) / Lebed, Richard (Committee member) / Comfort, Joseph (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2012
153383-Thumbnail Image.png
Description
Off-axis electron holography (EH) has been used to characterize electrostatic potential, active dopant concentrations and charge distribution in semiconductor nanostructures, including ZnO nanowires (NWs) and thin films, ZnTe thin films, Si NWs with axial p-n junctions, Si-Ge axial heterojunction NWs, and Ge/LixGe core/shell NW.

The mean inner potential (MIP) and inelastic

Off-axis electron holography (EH) has been used to characterize electrostatic potential, active dopant concentrations and charge distribution in semiconductor nanostructures, including ZnO nanowires (NWs) and thin films, ZnTe thin films, Si NWs with axial p-n junctions, Si-Ge axial heterojunction NWs, and Ge/LixGe core/shell NW.

The mean inner potential (MIP) and inelastic mean free path (IMFP) of ZnO NWs have been measured to be 15.3V±0.2V and 55±3nm, respectively, for 200keV electrons. These values were then used to characterize the thickness of a ZnO nano-sheet and gave consistent values. The MIP and IMFP for ZnTe thin films were measured to be 13.7±0.6V and 46±2nm, respectively, for 200keV electrons. A thin film expected to have a p-n junction was studied, but no signal due to the junction was observed. The importance of dynamical effects was systematically studied using Bloch wave simulations.

The built-in potentials in Si NWs across the doped p-n junction and the Schottky junction due to Au catalyst were measured to be 1.0±0.3V and 0.5±0.3V, respectively. Simulations indicated that the dopant concentrations were ~1019cm-3 for donors and ~1017 cm-3 for acceptors. The effects of positively charged Au catalyst, a possible n+-n--p junction transition region and possible surface charge, were also systematically studied using simulations.

Si-Ge heterojunction NWs were studied. Dopant concentrations were extracted by atom probe tomography. The built-in potential offset was measured to be 0.4±0.2V, with the Ge side lower. Comparisons with simulations indicated that Ga present in the Si region was only partially activated. In situ EH biasing experiments combined with simulations indicated the B dopant in Ge was mostly activated but not the P dopant in Si. I-V characteristic curves were measured and explained using simulations.

The Ge/LixGe core/shell structure was studied during lithiation. The MIP for LixGe decreased with time due to increased Li content. A model was proposed to explain the lower measured Ge potential, and the trapped electron density in Ge core was calculated to be 3×1018 electrons/cm3. The Li amount during lithiation was also calculated using MIP and volume ratio, indicating that it was lower than the fully lithiated phase.
ContributorsGan, Zhaofeng (Author) / Mccartney, Martha R (Thesis advisor) / Smith, David J. (Thesis advisor) / Drucker, Jeffery (Committee member) / Bennett, Peter A (Committee member) / Arizona State University (Publisher)
Created2015
150291-Thumbnail Image.png
Description
Group III-nitride semiconductors have attracted much attention for applications on high brightness light-emitting diodes (LEDs) and laser diodes (LDs) operating in the visible and ultra-violet spectral range using indium gallium nitride in the active layer. However, the device efficiency in the green to red range is limited by quantum-confined Stark

Group III-nitride semiconductors have attracted much attention for applications on high brightness light-emitting diodes (LEDs) and laser diodes (LDs) operating in the visible and ultra-violet spectral range using indium gallium nitride in the active layer. However, the device efficiency in the green to red range is limited by quantum-confined Stark effects resulting from the lattice mismatch between GaN and InGaN. In this dissertation, the optical and micro-structural properties of GaN-based light emitting structures have been analyzed and correlated by utilizing cathodoluminescence and transmission electron microscopy techniques. In the first section, optimization of the design of GaN-based lasers diode structures is presented. The thermal strain present in the GaN underlayer grown on sapphire substrates causes a strain-induced wavelength shift. The insertion of an InGaN waveguide mitigates the mismatch strain at the interface between the InGaN quantum well and the GaN quantum barrier. The second section of the thesis presents a study of the characteristics of thick non-polar m-plane InGaN films and of LED structures containing InGaN quantum wells, which minimize polarization-related electric fields. It is found that in some cases the in-plane piezoelectric fields can still occur due to the existence of misfit dislocations which break the continuity of the film. In the final section, the optical and structural properties of InGaAlN quaternary alloys are analyzed and correlated. The composition of the components of the film is accurately determined by Rutherford backscattering spectroscopy.
ContributorsHuang, Yu (Author) / Ponce, Fernando A. (Thesis advisor) / Tsen, Kong-Thon (Committee member) / Treacy, Michael (Committee member) / Drucker, Jeffery (Committee member) / Culbertson, Robert (Committee member) / Arizona State University (Publisher)
Created2011
149792-Thumbnail Image.png
Description
Ge1-ySny alloys represent a new class of photonic materials for integrated optoelectronics on Si. In this work, the electrical and optical properties of Ge1-ySny alloy films grown on Si, with concentrations in the range 0 ≤ y ≤ 0.04, are studied via a variety of methods. The first microelectronic devices

Ge1-ySny alloys represent a new class of photonic materials for integrated optoelectronics on Si. In this work, the electrical and optical properties of Ge1-ySny alloy films grown on Si, with concentrations in the range 0 ≤ y ≤ 0.04, are studied via a variety of methods. The first microelectronic devices from GeSn films were fabricated using newly developed CMOS-compatible protocols, and the devices were characterized with respect to their electrical properties and optical response. The detectors were found to have a detection range that extends into the near-IR, and the detection edge is found to shift to longer wavelengths with increasing Sn content, mainly due to the compositional dependence of the direct band gap E0. With only 2 % Sn, all of the telecommunication bands are covered by a single detector. Room temperature photoluminescence was observed from GeSn films with Sn content up to 4 %. The peak wavelength of the emission was found to shift to lower energies with increasing Sn content, corresponding to the decrease in the direct band gap E0 of the material. An additional peak in the spectrum was assigned to the indirect band gap. The separation between the direct and indirect peaks was found to decrease with increasing Sn concentration, as expected. Electroluminescence was also observed from Ge/Si and Ge0.98Sn0.02 photodiodes under forward bias, and the luminescence spectra were found to match well with the observed photoluminescence spectra. A theoretical expression was developed for the luminescence due to the direct band gap and fit to the data.
ContributorsMathews, Jay (Author) / Menéndez, Jose (Thesis advisor) / Kouvetakis, John (Thesis advisor) / Drucker, Jeffery (Committee member) / Chizmeshya, Andrew (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2011
150275-Thumbnail Image.png
Description
ABSTRACT Group III-nitride semiconductor materials have been commercially used in fabrication of light-emitting diodes (LEDs) and laser diodes (LDs) covering the spectral range from UV to visible and infrared, and exhibit unique properties suitable for modern optoelectronic applications. Great advances have recently happened in the research and development in high-power

ABSTRACT Group III-nitride semiconductor materials have been commercially used in fabrication of light-emitting diodes (LEDs) and laser diodes (LDs) covering the spectral range from UV to visible and infrared, and exhibit unique properties suitable for modern optoelectronic applications. Great advances have recently happened in the research and development in high-power and high-efficiency blue-green-white LEDs, blue LDs and other optoelectronic applications. However, there are still many unsolved challenges with these materials. In this dissertation, several issues concerning structural, electronic and optical properties of III-nitrides have been investigated using a combination of transmission electron microscopy (TEM), electron holography (EH) and cathodoluminescence (CL) techniques. First, a trend of indium chemical inhomogeneity has been found as the indium composition increases for the InGaN epitaxial layers grown by hydride vapor phase epitaxy. Second, different mechanisms contributing to the strain relaxation have been studied for non-polar InGaN epitaxial layers grown on zinc oxide (ZnO) substrate. Third, various structural morphologies of non-polar InGaN epitaxial layers grown on free-standing GaN substrate have been investigated. Fourth, the effect of the growth temperature on the performance of GaN lattice-matched InAlN electron blocking layers has been studied. Finally, the electronic and optical properties of GaN nanowires containing a AlN/GaN superlattice structure have been investigated showing relatively small internal electric field and superlattice- and defect-related emissions along the nanowires.
ContributorsSun, Kewei (Author) / Ponce, Fernando (Thesis advisor) / Smith, David (Committee member) / Treacy, Michael (Committee member) / Drucker, Jeffery (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2011
153821-Thumbnail Image.png
Description
This dissertation presents research findings regarding the exploitation of localized surface plasmon (LSP) of epitaxial Ag islands as a means to enhance the photoluminescence (PL) of Germanium (Ge) quantum dots (QDs). The first step of this project was to investigate the growth of Ag islands on Si(100). Two distinct families

This dissertation presents research findings regarding the exploitation of localized surface plasmon (LSP) of epitaxial Ag islands as a means to enhance the photoluminescence (PL) of Germanium (Ge) quantum dots (QDs). The first step of this project was to investigate the growth of Ag islands on Si(100). Two distinct families of Ag islands have been observed. “Big islands” are clearly faceted and have basal dimensions in the few hundred nm to μm range with a variety of basal shapes. “Small islands” are not clearly faceted and have basal diameters in the 10s of nm range. Big islands form via a nucleation and growth mechanism, and small islands form via precipitation of Ag contained in a planar layer between the big islands that is thicker than the Stranski-Krastanov layer existing at room-temperature.

The pseudodielectric functions of epitaxial Ag islands on Si(100) substrates were investigated with spectroscopic ellipsometry. Comparing the experimental pseudodielectric functions obtained for Si with and without Ag islands clearly identifies a plasmon mode with its dipole moment perpendicular to the surface. This observation is confirmed using a simulation based on the thin island film (TIF) theory. Another mode parallel to the surface may be identified by comparing the experimental pseudodielectric functions with the simulated ones from TIF theory. Additional results suggest that the LSP energy of Ag islands can be tuned from the ultra-violet to the infrared range by an amorphous Si (α-Si) cap layer.

Heterostructures were grown that incorporated Ge QDs, an epitaxial Si cap layer and Ag islands grown atop the Si cap layer. Optimum growth conditions for distinct Ge dot ensembles and Si cap layers were obtained. The density of Ag islands grown on the Si cap layer depends on its thickness. Factors contributing to this effect may include the average strain and Ge concentration on the surface of the Si cap layer.

The effects of the Ag LSP on the PL of Ge coherent domes were investigated for both α-Si capped and bare Ag islands. For samples with low-doped substrates, the LSPs reduce the Ge dot-related PL when the Si cap layer is below some critical thickness and have no effect on the PL when the Si cap layer is above the critical thickness. For samples grown on highly-doped wafers, the LSP of bare Ag islands enhanced the PL of Ge QDs by ~ 40%.
ContributorsKong, Dexin (Author) / Drucker, Jeffery (Thesis advisor) / Chen, Tingyong (Committee member) / Ros, Robert (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2015
156493-Thumbnail Image.png
Description
This dissertation describes the characterization of optoelectronic and electronic materials being considered for next generation semiconductor devices, primarily using electron microscopy techniques. The research included refinement of growth parameters for optimizing material quality, and investigation of heterostructured interfaces. The results provide better understanding of the fundamental materials science and should

This dissertation describes the characterization of optoelectronic and electronic materials being considered for next generation semiconductor devices, primarily using electron microscopy techniques. The research included refinement of growth parameters for optimizing material quality, and investigation of heterostructured interfaces. The results provide better understanding of the fundamental materials science and should lead to future improvements in device applications.

A microstructural study of tin selenide and tin manganese selenide thin films grown by molecular beam epitaxy (MBE) on GaAs (111)B substrates with different Se:Sn flux ratios and Mn concentrations was carried out. Low flux ratios lead to highly defective films, mostly consisting of SnSe, whereas higher flux ratios gave higher quality, single-phase SnSe2. The ternary (Sn,Mn)Se films evolved quasi-coherently, as the Mn concentration increased, from SnSe2 into a complex lattice, and then into MnSe with 3D rock-salt structure. These structural transformations should underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

II-VI/III-V compound semiconductor heterostructures have been characterized for growth in both single- and dual-chamber MBE systems. Three groups of lattice-matched materials have been investigated: i) 5.65Å materials based on GaAs, ii) 6.1Å materials based on InAs or GaSb, and iii) 6.5Å materials based on InSb. High quality II-VI materials grown on III-V substrates were demonstrated for ZnTe/GaSb and CdTe/InSb. III-V materials grown on II-VI buffer layers present additional challenges and were grown with varying degrees of success. InAsSb quantum wells in between ZnTe barriers were nearly defect-free, but showed 3D island growth. All other materials demonstrated flat interfaces, despite low growth temperature, but with stacking faults in the II-VI materials.

Femtosecond laser-induced defects (LIDs) in silicon solar cells were characterized using a variety of electron microscopy techniques. Scanning electron microscope (SEM) images showed that the intersections of laser lines, finger and busbar intersections, exhibited LIDs with the potential to shunt the contacts. SEM and transmission electron microscope (TEM) images correlated these LIDs with ablated c-Si and showed these defects to come in two sizes ~40nm and ~.5µm. The elemental profiles across defective and non-defective regions were found using energy dispersive x-ray spectroscopy.
ContributorsTracy, Brian David (Author) / Smith, David J. (Thesis advisor) / Bennett, Peter A (Committee member) / Drucker, Jeffery (Committee member) / Mccartney, Martha R (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2018
136610-Thumbnail Image.png
Description
STEM education stands for science, technology, engineering and mathematics, and is necessary for students to keep up with global competition in the changing job market, technological advancements and challenges of the future. However, American students are lacking STEM achievement at the state, national and global levels. To combat this lack

STEM education stands for science, technology, engineering and mathematics, and is necessary for students to keep up with global competition in the changing job market, technological advancements and challenges of the future. However, American students are lacking STEM achievement at the state, national and global levels. To combat this lack of achievement I propose that STEM instruction should begin in preschool, be integrated into the curriculum and be inquiry based. To support this proposal I created a month-long physics unit for preschoolers in a Head Start classroom. Students investigated the affect of incline, friction and weight on the distance of a rolling object, while developing their pre-math, pre-literacy and social emotional skills.
ContributorsGarrison, Victoria Leigh (Author) / Kelley, Michael (Thesis director) / Dahlstrom, Margo (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2015-05
135841-Thumbnail Image.png
Description
Over the past few years, the issue of childhood trauma in the United States has become significant. A growing number of children are experiencing abuse, neglect, or some other form of maltreatment each year. Considering the stressful home lives of maltreated children, the one sure sanctuary is school. However, this

Over the past few years, the issue of childhood trauma in the United States has become significant. A growing number of children are experiencing abuse, neglect, or some other form of maltreatment each year. Considering the stressful home lives of maltreated children, the one sure sanctuary is school. However, this idea requires teachers to be actively involved in identifying and caring for the children who need it most. Traumatic childhood experiences leave lasting scars on its victims, so it is helpful if teachers learn how to identify and support children who have lived through them. It is unfortunate that teachers will most likely encounter children throughout their career who have experienced horrendous things, but it is a reality. With this being said, teachers need to develop an understanding of what traumatized children live with, and learn how to address these issues with skilled sensitivity. Schools are not just a place where children learn how to read and write; they build the foundation for a successful life. This project was designed to provide teachers with a necessary resource for helping children who have suffered traumatic experiences. The methodology of this project began with interviews with organizations specializing in working with traumatized children such as Arizonans for Children, Free Arts for Abused Children, The Sojourner Center, and UMOM. The next step was a review of the current literature on the subject of childhood trauma. The findings have all been compiled into one, convenient document for teacher use and distribution. Upon completion of this document, an interactive video presentation will be made available through an online education website, so that distribution will be made simpler. Hopefully, teachers will share the information with people in their networks and create a chain reaction. The goal is to make it available to as many teachers as possible, so that more children will receive the support they need.
ContributorsHanrahan, Katelyn Ann (Author) / Dahlstrom, Margo (Thesis director) / Kelley, Michael (Committee member) / Division of Teacher Preparation (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
149639-Thumbnail Image.png
Description
The research of this dissertation involved quantitative characterization of electrostatic potential and charge distribution of semiconductor nanostructures using off-axis electron holography, as well as other electron microscopy techniques. The investigated nanostructures included Ge quantum dots, Ge/Si core/shell nanowires, and polytype heterostructures in ZnSe nanobelts. Hole densities were calculated for the

The research of this dissertation involved quantitative characterization of electrostatic potential and charge distribution of semiconductor nanostructures using off-axis electron holography, as well as other electron microscopy techniques. The investigated nanostructures included Ge quantum dots, Ge/Si core/shell nanowires, and polytype heterostructures in ZnSe nanobelts. Hole densities were calculated for the first two systems, and the spontaneous polarization for wurtzite ZnSe was determined. Epitaxial Ge quantum dots (QDs) embedded in boron-doped silicon were studied. Reconstructed phase images showed extra phase shifts near the base of the QDs, which was attributed to hole accumulation in these regions. The resulting charge density was (0.03±0.003) holes
m3, which corresponded to about 30 holes localized to a pyramidal, 25-nm-wide Ge QD. This value was in reasonable agreement with the average number of holes confined to each Ge dot determined using a capacitance-voltage measurement. Hole accumulation in Ge/Si core/shell nanowires was observed and quantified using off-axis electron holography and other electron microscopy techniques. High-angle annular-dark-field scanning transmission electron microscopy images and electron holograms were obtained from specific nanowires. The intensities of the former were utilized to calculate the projected thicknesses for both the Ge core and the Si shell. The excess phase shifts measured by electron holography across the nanowires indicated the presence of holes inside the Ge cores. The hole density in the core regions was calculated to be (0.4±0.2)
m3 based on a simplified coaxial cylindrical model. Homogeneous zincblende/wurtzite heterostructure junctions in ZnSe nanobelts were studied. The observed electrostatic fields and charge accumulation were attributed to spontaneous polarization present in the wurtzite regions since the contributions from piezoelectric polarization were shown to be insignificant based on geometric phase analysis. The spontaneous polarization for the wurtzite ZnSe was calculated to be psp = -(0.0029±0.00013) C/m2, whereas a first principles' calculation gave psp = -0.0063 C/m2. The atomic arrangements and polarity continuity at the zincblende/wurtzite interface were determined through aberration-corrected high-angle annular-dark-field imaging, which revealed no polarity reversal across the interface. Overall, the successful outcomes of these studies confirmed the capability of off-axis electron holography to provide quantitative electrostatic information for nanostructured materials.
ContributorsLi, Luying (Author) / McCartney, Martha R. (Thesis advisor) / Smith, David J. (Thesis advisor) / Treacy, Michael J. (Committee member) / Shumway, John (Committee member) / Drucker, Jeffery (Committee member) / Arizona State University (Publisher)
Created2011