Matching Items (19)
Filtering by

Clear all filters

151337-Thumbnail Image.png
Description
One dimensional (1D) and quasi-one dimensional quantum wires have been a subject of both theoretical and experimental interest since 1990s and before. Phenomena such as the "0.7 structure" in the conductance leave many open questions. In this dissertation, I study the properties and the internal electron states of semiconductor quantum

One dimensional (1D) and quasi-one dimensional quantum wires have been a subject of both theoretical and experimental interest since 1990s and before. Phenomena such as the "0.7 structure" in the conductance leave many open questions. In this dissertation, I study the properties and the internal electron states of semiconductor quantum wires with the path integral Monte Carlo (PIMC) method. PIMC is a tool for simulating many-body quantum systems at finite temperature. Its ability to calculate thermodynamic properties and various correlation functions makes it an ideal tool in bridging experiments with theories. A general study of the features interpreted by the Luttinger liquid theory and observed in experiments is first presented, showing the need for new PIMC calculations in this field. I calculate the DC conductance at finite temperature for both noninteracting and interacting electrons. The quantized conductance is identified in PIMC simulations without making the same approximation in the Luttinger model. The low electron density regime is subject to strong interactions, since the kinetic energy decreases faster than the Coulomb interaction at low density. An electron state called the Wigner crystal has been proposed in this regime for quasi-1D wires. By using PIMC, I observe the zig-zag structure of the Wigner crystal. The quantum fluctuations suppress the long range correla- tions, making the order short-ranged. Spin correlations are calculated and used to evaluate the spin coupling strength in a zig-zag state. I also find that as the density increases, electrons undergo a structural phase transition to a dimer state, in which two electrons of opposite spins are coupled across the two rows of the zig-zag. A phase diagram is sketched for a range of densities and transverse confinements. The quantum point contact (QPC) is a typical realization of quantum wires. I study the QPC by explicitly simulating a system of electrons in and around a Timp potential (Timp, 1992). Localization of a single electron in the middle of the channel is observed at 5 K, as the split gate voltage increases. The DC conductance is calculated, which shows the effect of the Coulomb interaction. At 1 K and low electron density, a state similar to the Wigner crystal is found inside the channel.
ContributorsLiu, Jianheng, 1982- (Author) / Shumway, John B (Thesis advisor) / Schmidt, Kevin E (Committee member) / Chen, Tingyong (Committee member) / Yu, Hongbin (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2012
151558-Thumbnail Image.png
Description
Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods

Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods such as no-core shell model or coupled-cluster techniques typically use softer non-local potentials because of their more rapid convergence with basis set size. These non-local potentials are typically defined in momentum space and are often based on effective field theory. Comparisons of the results of the two types of methods are complicated by the use of different potentials. This thesis discusses progress made in using such non-local potentials in quantum Monte Carlo calculations of light nuclei. In particular, it shows methods for evaluating the real-space, imaginary-time propagators needed to perform quantum Monte Carlo calculations using non-local potentials and universality properties of these propagators, how to formulate a good trial wave function for non-local potentials, and how to perform a "one-step" Green's function Monte Carlo calculation for non-local potentials.
ContributorsLynn, Joel E (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Shovkovy, Igor (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2013
151457-Thumbnail Image.png
Description
High electron mobility transistors (HEMTs) based on Group III-nitride heterostructures have been characterized by advanced electron microscopy methods including off-axis electron holography, nanoscale chemical analysis, and electrical measurements, as well as other techniques. The dissertation was organized primarily into three topical areas: (1) characterization of near-gate defects in electrically stressed

High electron mobility transistors (HEMTs) based on Group III-nitride heterostructures have been characterized by advanced electron microscopy methods including off-axis electron holography, nanoscale chemical analysis, and electrical measurements, as well as other techniques. The dissertation was organized primarily into three topical areas: (1) characterization of near-gate defects in electrically stressed AlGaN/GaN HEMTs, (2) microstructural and chemical analysis of the gate/buffer interface of AlN/GaN HEMTs, and (3) studies of the impact of laser-liftoff processing on AlGaN/GaN HEMTs. The electrical performance of stressed AlGaN/GaN HEMTs was measured and the devices binned accordingly. Source- and drain-side degraded, undegraded, and unstressed devices were then prepared via focused-ion-beam milling for examination. Defects in the near-gate region were identified and their correlation to electrical measurements analyzed. Increased gate leakage after electrical stressing is typically attributed to "V"-shaped defects at the gate edge. However, strong evidence was found for gate metal diffusion into the barrier layer as another contributing factor. AlN/GaN HEMTs grown on sapphire substrates were found to have high electrical performance which is attributed to the AlN barrier layer, and robust ohmic and gate contact processes. TEM analysis identified oxidation at the gate metal/AlN buffer layer interface. This thin a-oxide gate insulator was further characterized by energy-dispersive x-ray spectroscopy and energy-filtered TEM. Attributed to this previously unidentified layer, high reverse gate bias up to −30 V was demonstrated and drain-induced gate leakage was suppressed to values of less than 10−6 A/mm. In addition, extrinsic gm and ft * LG were improved to the highest reported values for AlN/GaN HEMTs fabricated on sapphire substrates. Laser-liftoff (LLO) processing was used to separate the active layers from sapphire substrates for several GaN-based HEMT devices, including AlGaN/GaN and InAlN/GaN heterostructures. Warpage of the LLO samples resulted from relaxation of the as-grown strain and strain arising from dielectric and metal depositions, and this strain was quantified by both Newton's rings and Raman spectroscopy methods. TEM analysis demonstrated that the LLO processing produced no detrimental effects on the quality of the epitaxial layers. TEM micrographs showed no evidence of either damage to the ~2 μm GaN epilayer generated threading defects.
ContributorsJohnson, Michael R. (Author) / Mccartney, Martha R (Thesis advisor) / Smith, David J. (Committee member) / Goodnick, Stephen (Committee member) / Shumway, John (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2012
151415-Thumbnail Image.png
Description
In this dissertation, remote plasma interactions with the surfaces of low-k interlayer dielectric (ILD), Cu and Cu adhesion layers are investigated. The first part of the study focuses on the simultaneous plasma treatment of ILD and chemical mechanical polishing (CMP) Cu surfaces using N2/H2 plasma processes. H atoms and radicals

In this dissertation, remote plasma interactions with the surfaces of low-k interlayer dielectric (ILD), Cu and Cu adhesion layers are investigated. The first part of the study focuses on the simultaneous plasma treatment of ILD and chemical mechanical polishing (CMP) Cu surfaces using N2/H2 plasma processes. H atoms and radicals in the plasma react with the carbon groups leading to carbon removal for the ILD films. Results indicate that an N2 plasma forms an amide-like layer on the surface which apparently leads to reduced carbon abstraction from an H2 plasma process. In addition, FTIR spectra indicate the formation of hydroxyl (Si-OH) groups following the plasma exposure. Increased temperature (380 °C) processing leads to a reduction of the hydroxyl group formation compared to ambient temperature processes, resulting in reduced changes of the dielectric constant. For CMP Cu surfaces, the carbonate contamination was removed by an H2 plasma process at elevated temperature while the C-C and C-H contamination was removed by an N2 plasma process at elevated temperature. The second part of this study examined oxide stability and cleaning of Ru surfaces as well as consequent Cu film thermal stability with the Ru layers. The ~2 monolayer native Ru oxide was reduced after H-plasma processing. The thermal stability or islanding of the Cu film on the Ru substrate was characterized by in-situ XPS. After plasma cleaning of the Ru adhesion layer, the deposited Cu exhibited full coverage. In contrast, for Cu deposition on the Ru native oxide substrate, Cu islanding was detected and was described in terms of grain boundary grooving and surface and interface energies. The thermal stability of 7 nm Ti, Pt and Ru ii interfacial adhesion layers between a Cu film (10 nm) and a Ta barrier layer (4 nm) have been investigated in the third part. The barrier properties and interfacial stability have been evaluated by Rutherford backscattering spectrometry (RBS). Atomic force microscopy (AFM) was used to measure the surfaces before and after annealing, and all the surfaces are relatively smooth excluding islanding or de-wetting phenomena as a cause of the instability. The RBS showed no discernible diffusion across the adhesion layer/Ta and Ta/Si interfaces which provides a stable underlying layer. For a Ti interfacial layer RBS indicates that during 400 °C annealing Ti interdiffuses through the Cu film and accumulates at the surface. For the Pt/Cu system Pt interdiffuion is detected which is less evident than Ti. Among the three adhesion layer candidates, Ru shows negligible diffusion into the Cu film indicating thermal stability at 400 °C.
ContributorsLiu, Xin (Author) / Nemanich, Robert (Thesis advisor) / Chamberlin, Ralph (Committee member) / Chen, Tingyong (Committee member) / Smith, David (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2012
152484-Thumbnail Image.png
Description
In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD

In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD dielectrics on GaN, and (3) interface electronic structure of PEALD dielectrics on Ga- and N-face GaN. The first study involved an in-depth case study of PEALD Al2O3 growth using dimethylaluminum isopropoxide, with a special focus on oxygen plasma effects. Saturated and self-limiting growth of Al2O3 films were obtained with an enhanced growth rate within the PEALD temperature window (25-220 ºC). The properties of Al2O3 deposited at various temperatures were characterized to better understand the relation between the growth parameters and film properties. In the second study, the interface electronic structures of PEALD dielectrics on Ga-face GaN films were measured. Five promising dielectrics (Al2O3, HfO2, SiO2, La2O3, and ZnO) with a range of band gap energies were chosen. Prior to dielectric growth, a combined wet chemical and in-situ H2/N2 plasma clean process was employed to remove the carbon contamination and prepare the surface for dielectric deposition. The surface band bending and band offsets were measured by XPS and UPS for dielectrics on GaN. The trends of the experimental band offsets on GaN were related to the dielectric band gap energies. In addition, the experimental band offsets were near the calculated values based on the charge neutrality level model. The third study focused on the effect of the polarization bound charge of the Ga- and N-face GaN on interface electronic structures. A surface pretreatment process consisting of a NH4OH wet chemical and an in-situ NH3 plasma treatment was applied to remove carbon contamination, retain monolayer oxygen coverage, and potentially passivate N-vacancy related defects. The surface band bending and polarization charge compensation of Ga- and N-face GaN were investigated. The surface band bending and band offsets were determined for Al2O3, HfO2, and SiO2 on Ga- and N-face GaN. Different dielectric thicknesses and post deposition processing were investigated to understand process related defect formation and/or reduction.
ContributorsYang, Jialing (Author) / Nemanich, Robert J (Thesis advisor) / Chen, Tingyong (Committee member) / Peng, Xihong (Committee member) / Ponce, Fernando (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2014
153101-Thumbnail Image.png
Description
Spin-orbit interactions are important in determining nuclear structure. They lead to a shift in the energy levels in the nuclear shell model, which could explain the sequence of magic numbers in nuclei. Also in nucleon-nucleon scattering, the large nucleon polarization observed perpendicular to the plane of scattering needs to be

Spin-orbit interactions are important in determining nuclear structure. They lead to a shift in the energy levels in the nuclear shell model, which could explain the sequence of magic numbers in nuclei. Also in nucleon-nucleon scattering, the large nucleon polarization observed perpendicular to the plane of scattering needs to be explained by adding the spin-orbit interactions in the potential. Their effects change the equation of state and other properties of nuclear matter. Therefore, the simulation of spin-orbit interactions is necessary in nuclear matter.

The auxiliary field diffusion Monte Carlo is an effective and accurate method for calculating the ground state and low-lying exited states in nuclei and nuclear matter. It has successfully employed the Argonne v6' two-body potential to calculate the equation of state in nuclear matter, and has been applied to light nuclei with reasonable agreement with experimental results. However, the spin-orbit interactions were not included in the previous simulations, because the isospin-dependent spin-orbit potential is difficult in the quantum Monte Carlo method. This work develops a new method using extra auxiliary fields to break up the interactions between nucleons, so that the spin-orbit interaction with isospin can be included in the Hamiltonian, and ground-state energy and other properties can be obtained.
ContributorsZhang, Jie (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2014
150198-Thumbnail Image.png
Description
In this project, a novel method is presented for measuring the resistivity of nanoscale metallic conductors (nanowires) using a variable-spacing 2-point method with a modified ultrahigh vacuum scanning tunneling microscope. An auxiliary field emission imaging method that allows for scanning insulating surfaces using a large gap distance (20nm) is also

In this project, a novel method is presented for measuring the resistivity of nanoscale metallic conductors (nanowires) using a variable-spacing 2-point method with a modified ultrahigh vacuum scanning tunneling microscope. An auxiliary field emission imaging method that allows for scanning insulating surfaces using a large gap distance (20nm) is also presented. Using these methods, the resistivity of self-assembled endotaxial FeSi2 nanowires (NWs) on Si(110) was measured. The resistivity was found to vary inversely with NW width, being rhoNW = 200 uOhm cm at 12 nm and 300 uOhm cm at 2 nm. The increase at small w is attributed to boundary scattering, and is fit to the Fuchs-Sondheimer model, yielding values of rho0 = 150 uOhm cm and lambda = 2.4 nm, for specularity parameter p = 0.5. These results are attributed to a high concentration of point defects in the FeSi2 structure, with a correspondingly short inelastic electron scattering length. It is remarkable that the defect concentration persists in very small structures, and is not changed by surface oxidation.
ContributorsTobler, Samuel (Author) / Bennett, Peter (Thesis advisor) / McCartney, Martha (Committee member) / Tao, Nongjian (Committee member) / Doak, Bruce (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2011
153821-Thumbnail Image.png
Description
This dissertation presents research findings regarding the exploitation of localized surface plasmon (LSP) of epitaxial Ag islands as a means to enhance the photoluminescence (PL) of Germanium (Ge) quantum dots (QDs). The first step of this project was to investigate the growth of Ag islands on Si(100). Two distinct families

This dissertation presents research findings regarding the exploitation of localized surface plasmon (LSP) of epitaxial Ag islands as a means to enhance the photoluminescence (PL) of Germanium (Ge) quantum dots (QDs). The first step of this project was to investigate the growth of Ag islands on Si(100). Two distinct families of Ag islands have been observed. “Big islands” are clearly faceted and have basal dimensions in the few hundred nm to μm range with a variety of basal shapes. “Small islands” are not clearly faceted and have basal diameters in the 10s of nm range. Big islands form via a nucleation and growth mechanism, and small islands form via precipitation of Ag contained in a planar layer between the big islands that is thicker than the Stranski-Krastanov layer existing at room-temperature.

The pseudodielectric functions of epitaxial Ag islands on Si(100) substrates were investigated with spectroscopic ellipsometry. Comparing the experimental pseudodielectric functions obtained for Si with and without Ag islands clearly identifies a plasmon mode with its dipole moment perpendicular to the surface. This observation is confirmed using a simulation based on the thin island film (TIF) theory. Another mode parallel to the surface may be identified by comparing the experimental pseudodielectric functions with the simulated ones from TIF theory. Additional results suggest that the LSP energy of Ag islands can be tuned from the ultra-violet to the infrared range by an amorphous Si (α-Si) cap layer.

Heterostructures were grown that incorporated Ge QDs, an epitaxial Si cap layer and Ag islands grown atop the Si cap layer. Optimum growth conditions for distinct Ge dot ensembles and Si cap layers were obtained. The density of Ag islands grown on the Si cap layer depends on its thickness. Factors contributing to this effect may include the average strain and Ge concentration on the surface of the Si cap layer.

The effects of the Ag LSP on the PL of Ge coherent domes were investigated for both α-Si capped and bare Ag islands. For samples with low-doped substrates, the LSPs reduce the Ge dot-related PL when the Si cap layer is below some critical thickness and have no effect on the PL when the Si cap layer is above the critical thickness. For samples grown on highly-doped wafers, the LSP of bare Ag islands enhanced the PL of Ge QDs by ~ 40%.
ContributorsKong, Dexin (Author) / Drucker, Jeffery (Thesis advisor) / Chen, Tingyong (Committee member) / Ros, Robert (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2015
154069-Thumbnail Image.png
Description
Sample delivery is an essential component in biological imaging using serial diffraction from X-ray Free Electron Lasers (XFEL) and synchrotrons. Recent developments have made possible the near-atomic resolution structure determination of several important proteins, including one G protein-coupled receptor (GPCR) drug target, whose structure could not easily have been

Sample delivery is an essential component in biological imaging using serial diffraction from X-ray Free Electron Lasers (XFEL) and synchrotrons. Recent developments have made possible the near-atomic resolution structure determination of several important proteins, including one G protein-coupled receptor (GPCR) drug target, whose structure could not easily have been determined otherwise (Appendix A). In this thesis I describe new sample delivery developments that are paramount to advancing this field beyond what has been accomplished to date. Soft Lithography was used to implement sample conservation in the Gas Dynamic Virtual Nozzle (GDVN). A PDMS/glass composite microfluidic injector was created and given the capability of millisecond fluidic switching of a GDVN liquid jet within the divergent section of a 2D Laval-like GDVN nozzle, providing a means of collecting sample between the pulses of current XFELs. An oil/water droplet immersion jet was prototyped that suspends small sample droplets within an oil jet such that the sample droplet frequency may match the XFEL pulse repetition rate. A similar device was designed to use gas bubbles for synchronized “on/off” jet behavior and for active micromixing. 3D printing based on 2-Photon Polymerization (2PP) was used to directly fabricate reproducible GDVN injectors at high resolution, introducing the possibility of systematic nozzle research and highly complex GDVN injectors. Viscous sample delivery using the “LCP injector” was improved with a method for dealing with poorly extruding sample mediums when using full beam transmission from the Linac Coherent Light Source (LCLS), and a new viscous crystal-carrying medium was characterized for use in both vacuum and atmospheric environments: high molecular weight Polyethylene Glycol.
ContributorsNelson, Garrett Charles (Author) / Spence, John C (Thesis advisor) / Weierstall, Uwe J (Thesis advisor) / Schmidt, Kevin E (Committee member) / Beckstein, Oliver (Committee member) / Arizona State University (Publisher)
Created2015
154170-Thumbnail Image.png
Description
A theoretical study of a three-dimensional (3D) N/S interface with arbitrary spin

polarization and interface geometry is presented. The 3D model gives the same intrinsic

spin polarization and superconducting gap dependence as the 1D model. This

demonstrates that the 1D model can be use to t 3D data.

Using this model, a Heusler alloy

A theoretical study of a three-dimensional (3D) N/S interface with arbitrary spin

polarization and interface geometry is presented. The 3D model gives the same intrinsic

spin polarization and superconducting gap dependence as the 1D model. This

demonstrates that the 1D model can be use to t 3D data.

Using this model, a Heusler alloy is investigated. Andreev reflection measurements

show that the spin polarization is 80% in samples sputtered on unheated MgO(100)

substrates and annealed at high temperatures. However, the spin polarization is

considerably smaller in samples deposited on heated substrates.

Ferromagnetic FexSi􀀀x alloys have been proposed as potential spin injectors into

silicon with a substantial spin polarization. Andreev Reflection Spectroscopy (ARS) is

utilized to determine the spin polarization of both amorphous and crystalline Fe65Si35

alloys. The amorphous phase has a significantly higher spin polarization than that of

the crystalline phase.

In this thesis, (1111) Fe SmO0:82F0:18FeAs and Pb superconductors are used to

measure the spin polarization of a highly spin-polarized material, La0:67Sr0:33MnO3.

Both materials yield the same intrinsic spin polarization, therefore, Fe-superconductors

can be used in ARS. Based on the behavior of the differential conductance for highly

spin polarized LSMO and small polarization of Au, it can be concluded that the Fe-Sc

is not a triplet superconductor.

Zero bias anomaly (ZBA), in point contact Andreev reflection (PCAR), has been

utilized as a characteristic feature to reveal many novel physics. Complexities at a

normal metal/superconducting interface often cause nonessential ZBA-like features,

which may be mistaken as ZBA. In this work, it is shown that an extrinsic ZBA,

which is due to the contact resistance, cannot be suppressed by a highly spin-polarized

current while a nonessential ZBA cannot be affected the contact resistance.

Finally, Cu/Cu multilayer GMR structures were fabricated and the GMR% measured

at 300 K and 4.5 K gave responses of 63% and 115% respectively. Not only

do the GMR structures have a large enhancement of resistance, but by applying an

external magnetic eld it is shown that, unlike most materials, the spin polarization

can be tuned to values of 0.386 to 0.415 from H = 0 kOe to H = 15 kOe.
ContributorsGifford, Jessica Anna (Author) / Chen, Tingyong (Thesis advisor) / Bennett, Peter (Committee member) / Nemanich, Robert (Committee member) / Tsen, Kong-Thon (Committee member) / Arizona State University (Publisher)
Created2015