Matching Items (26)
Filtering by

Clear all filters

135547-Thumbnail Image.png
Description
The Experimental Data Processing (EDP) software is a C++ GUI-based application to streamline the process of creating a model for structural systems based on experimental data. EDP is designed to process raw data, filter the data for noise and outliers, create a fitted model to describe that data, complete a

The Experimental Data Processing (EDP) software is a C++ GUI-based application to streamline the process of creating a model for structural systems based on experimental data. EDP is designed to process raw data, filter the data for noise and outliers, create a fitted model to describe that data, complete a probabilistic analysis to describe the variation between replicates of the experimental process, and analyze reliability of a structural system based on that model. In order to help design the EDP software to perform the full analysis, the probabilistic and regression modeling aspects of this analysis have been explored. The focus has been on creating and analyzing probabilistic models for the data, adding multivariate and nonparametric fits to raw data, and developing computational techniques that allow for these methods to be properly implemented within EDP. For creating a probabilistic model of replicate data, the normal, lognormal, gamma, Weibull, and generalized exponential distributions have been explored. Goodness-of-fit tests, including the chi-squared, Anderson-Darling, and Kolmogorov-Smirnoff tests, have been used in order to analyze the effectiveness of any of these probabilistic models in describing the variation of parameters between replicates of an experimental test. An example using Young's modulus data for a Kevlar-49 Swath stress-strain test was used in order to demonstrate how this analysis is performed within EDP. In order to implement the distributions, numerical solutions for the gamma, beta, and hypergeometric functions were implemented, along with an arbitrary precision library to store numbers that exceed the maximum size of double-precision floating point digits. To create a multivariate fit, the multilinear solution was created as the simplest solution to the multivariate regression problem. This solution was then extended to solve nonlinear problems that can be linearized into multiple separable terms. These problems were solved analytically with the closed-form solution for the multilinear regression, and then by using a QR decomposition to solve numerically while avoiding numerical instabilities associated with matrix inversion. For nonparametric regression, or smoothing, the loess method was developed as a robust technique for filtering noise while maintaining the general structure of the data points. The loess solution was created by addressing concerns associated with simpler smoothing methods, including the running mean, running line, and kernel smoothing techniques, and combining the ability of each of these methods to resolve those issues. The loess smoothing method involves weighting each point in a partition of the data set, and then adding either a line or a polynomial fit within that partition. Both linear and quadratic methods were applied to a carbon fiber compression test, showing that the quadratic model was more accurate but the linear model had a shape that was more effective for analyzing the experimental data. Finally, the EDP program itself was explored to consider its current functionalities for processing data, as described by shear tests on carbon fiber data, and the future functionalities to be developed. The probabilistic and raw data processing capabilities were demonstrated within EDP, and the multivariate and loess analysis was demonstrated using R. As the functionality and relevant considerations for these methods have been developed, the immediate goal is to finish implementing and integrating these additional features into a version of EDP that performs a full streamlined structural analysis on experimental data.
ContributorsMarkov, Elan Richard (Author) / Rajan, Subramaniam (Thesis director) / Khaled, Bilal (Committee member) / Chemical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Ira A. Fulton School of Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136550-Thumbnail Image.png
Description
The NFL is one of largest and most influential industries in the world. In America there are few companies that have a stronger hold on the American culture and create such a phenomena from year to year. In this project aimed to develop a strategy that helps an NFL team

The NFL is one of largest and most influential industries in the world. In America there are few companies that have a stronger hold on the American culture and create such a phenomena from year to year. In this project aimed to develop a strategy that helps an NFL team be as successful as possible by defining which positions are most important to a team's success. Data from fifteen years of NFL games was collected and information on every player in the league was analyzed. First there needed to be a benchmark which describes a team as being average and then every player in the NFL must be compared to that average. Based on properties of linear regression using ordinary least squares this project aims to define such a model that shows each position's importance. Finally, once such a model had been established then the focus turned to the NFL draft in which the goal was to find a strategy of where each position needs to be drafted so that it is most likely to give the best payoff based on the results of the regression in part one.
ContributorsBalzer, Kevin Ryan (Author) / Goegan, Brian (Thesis director) / Dassanayake, Maduranga (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136488-Thumbnail Image.png
Description
We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on the resonant pole mass (the "cusp effect"), leading to an effect called "pole-dragging." We consider two models for resonances: a

We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on the resonant pole mass (the "cusp effect"), leading to an effect called "pole-dragging." We consider two models for resonances: a molecular, mesonic model, and a color-nonsinglet diquark plus antidiquark model. Then, we compare the pole-dragging effect due to these models on the masses of the f0(980), the X(3872), and the Zb(10610) and compare the effect's magnitude. We find that, while for lower masses, such as the f 0 (980), the pole-dragging effect that arises from the molecular model is more significant, the diquark model's pole-dragging effect becomes dominant at higher masses such as those of the X(3872) and the Z b (10610). This indicates that for lower threshold energies, diquark models may have less significant effects on predicted resonant masses than mesonic models, but for higher threshold energies, it is necessary to include the pole-dragging effect due to a diquark threshold in high-precision QCD calculations.
ContributorsBlitz, Samuel Harris (Author) / Richard, Lebed (Thesis director) / Comfort, Joseph (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
136114-Thumbnail Image.png
Description
Preliminary feasibility studies for two possible experiments with the GlueX detector, installed in Hall D of Jefferson Laboratory, are presented. First, a general study of the feasibility of detecting the ηC at the current hadronic rate is discussed, without regard for detector or reconstruction efficiency. Second, a study of the

Preliminary feasibility studies for two possible experiments with the GlueX detector, installed in Hall D of Jefferson Laboratory, are presented. First, a general study of the feasibility of detecting the ηC at the current hadronic rate is discussed, without regard for detector or reconstruction efficiency. Second, a study of the use of statistical methods in studying exotic meson candidates is outlined, describing methods and providing preliminary data on their efficacy.
ContributorsPrather, Benjamin Scott (Author) / Ritchie, Barry G. (Thesis director) / Dugger, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
Description
Since the acceptance of Einstein's special theory of relativity by the scientific community, authors of science fiction have used the concept of time dilation to permit seemingly impossible feats. Simple spacecraft acceleration schemes involving time dilation have been considered by scientists and fiction writers alike. Using an original Java program

Since the acceptance of Einstein's special theory of relativity by the scientific community, authors of science fiction have used the concept of time dilation to permit seemingly impossible feats. Simple spacecraft acceleration schemes involving time dilation have been considered by scientists and fiction writers alike. Using an original Java program based upon the differential equations for special relativistic kinematics, several scenarios for round trip excursions at relativistic speeds are calculated and compared, with particular attention to energy budget and relativistic time passage in all relevant frames.
ContributorsAlfson, Jonathan William (Author) / Jacob, Richard (Thesis director) / Covatto, Carl (Committee member) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
136216-Thumbnail Image.png
Description
In this paper, optimal control routines are applied to an existing problem of electron state transfer to determine if spin information can successfully be moved across a chain of donor atoms in silicon. The additional spin degrees of freedom are introduced into the formulation of the problem as well as

In this paper, optimal control routines are applied to an existing problem of electron state transfer to determine if spin information can successfully be moved across a chain of donor atoms in silicon. The additional spin degrees of freedom are introduced into the formulation of the problem as well as the control optimization algorithm. We find a timescale of transfer for spin quantum information across the chain fitting with a t > π/A and t > 2π/A transfer pulse time corresponding with rotation of states on the electron Bloch sphere where A is the electron-nuclear coupling constant. Introduction of a magnetic field weakens transfer
efficiencies at high field strengths and prohibits anti-aligned nuclear states from transferring. We also develop a rudimentary theoretical model based on simulated results and partially validate the characteristic transfer times for spin states. This model also establishes a framework for future work including the introduction of a magnetic field.
ContributorsMorgan, Eric Robert (Author) / Treacy, Michael (Thesis director) / Whaley, K. Birgitta (Committee member) / Greenman, Loren (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
132440-Thumbnail Image.png
Description
In this experiment an Electrodynamic Ion Ring Trap was constructed and tested. Due to the nature of Electrostatic fields, the setup required an oscillating voltage source to stably trap the particles. It was built in a safe manner, The power supply was kept in a project box to avoid incidental

In this experiment an Electrodynamic Ion Ring Trap was constructed and tested. Due to the nature of Electrostatic fields, the setup required an oscillating voltage source to stably trap the particles. It was built in a safe manner, The power supply was kept in a project box to avoid incidental contact, and was connected to a small copper wire in the shape of a ring. The maximum voltage that could be experienced via incidental contact was well within safe ranges a 0.3mA. Within minutes of its completion the trap was able to trap small Lycopodium powder spores mass of approximately 1.7*10^{-11}kg in clusters of 15-30 for long timescales. The oscillations of these spores were observed to be roughly 1.01mm at their maximum, and in an attempt to understand the dynamics of the Ion Trap, a concept called the pseudo-potential of the trap was used. This method proved fairly inaccurate, involving much estimation and using a static field estimation of 9.39*10^8 N\C and a charge estimate on the particles of ~1e, a maximum oscillation distance of 1.37m was calculated. Though the derived static field strength was not far off from the field strength required to achieve the correct oscillation distance (Percent error of 9.92%, the small discrepancy caused major calculation errors. The trap's intended purpose however was to eventually trap protein molecules for mapping via XFEL laser, and after its successful construction that goal is fairly achievable. The trap was also housed in a vacuum chamber so that it could be more effectively implemented with the XFEL.
ContributorsNicely, Ryan Joseph (Author) / Kirian, Richard (Thesis director) / Weiterstall, Uwe (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132834-Thumbnail Image.png
Description
Exchange traded funds (ETFs) in many ways are similar to more traditional closed-end mutual
funds, although thee differ in a crucial way. ETFs rely on a creation and redemption feature to
achieve their functionality and this mechanism is designed to minimize the deviations that occur
between the ETF’s listed price and the net

Exchange traded funds (ETFs) in many ways are similar to more traditional closed-end mutual
funds, although thee differ in a crucial way. ETFs rely on a creation and redemption feature to
achieve their functionality and this mechanism is designed to minimize the deviations that occur
between the ETF’s listed price and the net asset value of the ETF’s underlying assets. However
while this does cause ETF deviations to be generally lower than their mutual fund counterparts,
as our paper explores this process does not eliminate these deviations completely. This article
builds off an earlier paper by Engle and Sarkar (2006) that investigates these properties of
premiums (discounts) of ETFs from their fair market value. And looks to see if these premia
have changed in the last 10 years. Our paper then diverges from the original and takes a deeper
look into the standard deviations of these premia specifically.
Our findings show that over 70% of an ETFs standard deviation of premia can be
explained through a linear combination consisting of two variables: a categorical (Domestic[US],
Developed, Emerging) and a discrete variable (time-difference from US). This paper also finds
that more traditional metrics such as market cap, ETF price volatility, and even 3rd party market
indicators such as the economic freedom index and investment freedom index are insignificant
predictors of an ETFs standard deviation of premia. These findings differ somewhat from
existing literature which indicate that these factors should have a significant impact on the
predictive ability of an ETFs standard deviation of premia.
ContributorsHenning, Thomas Louis (Co-author) / Zhang, Jingbo (Co-author) / Simonson, Mark (Thesis director) / Wendell, Licon (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133570-Thumbnail Image.png
Description
In the last decade, the population of honey bees across the globe has declined sharply leaving scientists and bee keepers to wonder why? Amongst all nations, the United States has seen some of the greatest declines in the last 10 plus years. Without a definite explanation, Colony Collapse Disorder (CCD)

In the last decade, the population of honey bees across the globe has declined sharply leaving scientists and bee keepers to wonder why? Amongst all nations, the United States has seen some of the greatest declines in the last 10 plus years. Without a definite explanation, Colony Collapse Disorder (CCD) was coined to explain the sudden and sharp decline of the honey bee colonies that beekeepers were experiencing. Colony collapses have been rising higher compared to expected averages over the years, and during the winter season losses are even more severe than what is normally acceptable. There are some possible explanations pointing towards meteorological variables, diseases, and even pesticide usage. Despite the cause of CCD being unknown, thousands of beekeepers have reported their losses, and even numbers of infected colonies and colonies under certain stressors in the most recent years. Using the data that was reported to The United States Department of Agriculture (USDA), as well as weather data collected by The National Centers for Environmental Information (NOAA) and the National Centers for Environmental Information (NCEI), regression analysis was used to investigate honey bee colonies to find relationships between stressors in honey bee colonies and meteorological variables, and colony collapses during the winter months. The regression analysis focused on the winter season, or quarter 4 of the year, which includes the months of October, November, and December. In the model, the response variables was the percentage of colonies lost in quarter 4. Through the model, it was concluded that certain weather thresholds and the percentage increase of colonies under certain stressors were related to colony loss.
ContributorsVasquez, Henry Antony (Author) / Zheng, Yi (Thesis director) / Saffell, Erinanne (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05