Matching Items (6)

Filtering by

Clear all filters

132702-Thumbnail Image.png

Delays in reticulospinal system are correlated with deficits in motor learning in older adults.

Description

Motor skill acquisition, the process by which individuals practice and consolidate movement to become faster, more accurate and efficient, declines with age. Initial skill acquisition is dominated by cortical structures; however as learning proceeds, literature from rodents and songbirds suggests

Motor skill acquisition, the process by which individuals practice and consolidate movement to become faster, more accurate and efficient, declines with age. Initial skill acquisition is dominated by cortical structures; however as learning proceeds, literature from rodents and songbirds suggests that there is a transition away from cortical execution. Recent evidence indicates that the reticulospinal system plays an important role in integration and retention of learned motor skills. The brainstem has known age-rated deficits including cell shrinkage & death. Given the role of the reticulospinal system in skill acquisition and older adult’s poor capacity to learn, it begs the question: are delays in the reticulospinal system associated with older adult’s poor capacity to learn?
Our objective was to evaluate if delays in the reticulospinal system (measured via the startle reflex) are correlated to impairment of motor learning in older adults. We found that individuals with fast startle responses resembling those of younger adults show the most learning and retention of that learning while individuals with delayed startle responses show the least. Moreover, linear regression analysis indicated that startle onset latency exists within a continuum of learning outcomes suggesting that startle onset latency may be a sensitive measure to predict learning deficits in older adults. As there exists no method to determine an individual’s relative learning capacity, these results open the possibility of startle, which is an easy and inexpensive behavioral measure, being used to predict learning deficits in older adults to facilitate better dosing during rehabilitation therapy.

Contributors

Agent

Created

Date Created
2019-05

131928-Thumbnail Image.png

The Impact of a Starting Acoustic Stimulus and Transcranial Magnetic Stimulation on Reaction Times in Unimpaired Adults

Description

Motor skill acquisition, the process by which individuals practice and consolidate
movement to become faster, more accurate and efficient, declines with age. Initial skill acquisition is dominated by cortical structures; however as learning proceeds, literature from
rodents and songbirds suggests

Motor skill acquisition, the process by which individuals practice and consolidate
movement to become faster, more accurate and efficient, declines with age. Initial skill acquisition is dominated by cortical structures; however as learning proceeds, literature from
rodents and songbirds suggests that there is a transition away from cortical execution. Recent
evidence indicates that the reticulospinal system plays an important role in integration and
retention of learned motor skills. The brainstem has known age-rated deficits including cell
shrinkage & death. Given the role of the reticulospinal system in skill acquisition and older
adult’s poor capacity to learn, it begs the question: are delays in the reticulospinal system
associated with older adult’s poor capacity to learn?
Our objective was to evaluate if delays in the reticulospinal system (measured via the
startle reflex) and corticospinal system (measured via Transcranial Magnetic Stimulation (TMS) are correlated to impairment of motor learning in older adults. We found that individuals with fast startle responses resembling those of younger adults show the most improvement and retention while individuals with delayed startle responses show the least. We also found that there was no relationship between MEP latencies and improvement and retention. Moreover, linear regression analysis indicated that startle onset latency exists within a continuum of learning outcomes suggesting that startle onset latency may be a sensitive measure to predict learning deficits in older adults. As there exists no method to determine an individual’s relative learning capacity, these results open the possibility of startle, which is an easy and inexpensive behavioral measure and can be used to determine learning deficits in older adults to facilitate better dosing during rehabilitation therapy.

Contributors

Agent

Created

Date Created
2020-05

134938-Thumbnail Image.png

Startle can evoke individuated movements of the fingers; implications for neural control

Description

Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that

Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements of the hand (grasp) but not individuated movements of the finger (finger abduction) were susceptible. It was suggested that this resulted from different neural mechanisms involved in each task; however it is possible this was the result of task familiarity. The objective of this study was to evaluate a more familiar individuated finger movement, typing, to determine if this task was susceptible to SEM. We hypothesized that typing movements will be susceptible to SEM in all fingers. These results indicate that individuated movements of the fingers are susceptible to SEM when the task involves a more familiar task, since the electromyogram (EMG) latency is faster in SCM+ trials compared to SCM- trials. However, the middle finger does not show a difference in terms of the keystroke voltage signal, suggesting the middle finger is less susceptible to SEM. Given that SEM is thought to be mediated by the brainstem, specifically the reticulospinal tract, this suggest that the brainstem may play a role in movements of the distal limb when those movements are very familiar, and the independence of each finger might also have a significant on the effect of SEM. Further research includes understanding SEM in fingers in the stroke population. The implications of this research can impact the way upper extremity rehabilitation is delivered.

Contributors

Agent

Created

Date Created
2016-12

131024-Thumbnail Image.png

StartReact and its Effect on Functional Upper Extremity Motor Tasks

Description

The phenomenon known as startReact is the fast, involuntary execution of a planned movement triggered by a startling acoustic stimulus. StartReact has previously been analyzed in simple motor movements such as finger abduction tasks, hand grasp tasks, and elbow extension

The phenomenon known as startReact is the fast, involuntary execution of a planned movement triggered by a startling acoustic stimulus. StartReact has previously been analyzed in simple motor movements such as finger abduction tasks, hand grasp tasks, and elbow extension tasks. More complex movements have also been analyzed, but there have been limited studies that look into functional complex tasks that require end-point accuracy. The objective of this project was to assess the ability to elicit startReact in tasks that simulate activities of daily living like feeding or picking up a glass of water. We hypothesized that a startReact response would be present in complex functional tasks, but the response would not be as accurate due to the increase in speed. Five subjects performed a simulated feeding task by moving kidney beans from one target to another where the end target changed in diameter as well as, a simulated drinking task where the subject moved a cup full of beads from one target to another. The hypothesis was supported due to a significant difference between no stimulus and stimulus trials for tricep muscle onset time, duration time, and the accuracy parameters of amount of beans dropped and weight in beads dropped. The results coincided with previous studies where subjects compensated for the change in diameter by increasing reaction time as the target diameter size decreased. The data obtained contradicted a previous study in relation to the duration time between the tasks due to our smallest diameter size having a faster duration time in comparison to the other diameter sizes. This study provides preliminary data that could assist researchers and clinicians in improving physical therapy methods for patients with impaired upper extremity motor movements.

Contributors

Created

Date Created
2020-12

134804-Thumbnail Image.png

Startle-evoked movement in multi-jointed, two-dimensional reaching tasks

Description

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.

Contributors

Agent

Created

Date Created
2016-12

158858-Thumbnail Image.png

Exploring the Utilization of Startle as a Therapy Tool in Individuals with Stroke

Description

Stroke is a debilitating disorder and 75% of individuals with stroke (iwS) have upper extremity deficits. IwS are prescribed therapies to enhance upper-extremity mobility, but current most effective therapies have minimum requirements that the individuals with severe impairment do not

Stroke is a debilitating disorder and 75% of individuals with stroke (iwS) have upper extremity deficits. IwS are prescribed therapies to enhance upper-extremity mobility, but current most effective therapies have minimum requirements that the individuals with severe impairment do not meet. Thus, there is a need to enhance the therapies. Recent studies have shown that StartReact -the involuntary release of a planned movement, triggered by a startling stimulus (e.g., loud sound)- elicits faster and larger muscle activation in iwS compared to voluntary-initiated movement. However, StartReact has been only cursorily studied to date and there are some gaps in the StartReact knowledge. Previous studies have only evaluated StartReact on single-jointed movements in iwS, ignoring more functional tasks. IwS usually have abnormal flexor activity during extension tasks and abnormal muscle synergy especially during multi-jointed tasks; therefore, it is unknown 1) if more complex multi-jointed reach movements are susceptible to StartReact, and 2) if StartReact multi-jointed movements will be enhanced in the same way as single-jointed movements in iwS. In addition, previous studies showed that individuals with severe stroke, especially those with higher spasticity, experienced higher abnormal flexor muscle activation during StartReact trials. However, there is no study evaluating the impact of this elevated abnormal flexor activity on movement, muscle activation and muscle synergy alterations during voluntary-initiated movements after exposure to StartReact.
This dissertation evaluates StartReact and the voluntary trials before and after exposure to StartReact during a point-to-point multi-jointed reach task to three different targets covering a large workspace. The results show that multi-jointed reach tasks are susceptible to StartReact in iwS and the distance, muscle and movement onset speed, and muscle activations percentages and amplitude increase during StartReact trials. In addition, the distance, accuracy, muscle and movement onsets speeds, and muscle synergy similarity indices to the norm synergies increase during the voluntary-initiated trials after exposure to StartReact. Overall, this dissertation shows that exposure to StartReact did not impair voluntary-initiated movement and muscle synergy, but even improved them. Therefore, this study suggests that StartReact is safe for more investigations in training studies and therapy.

Contributors

Agent

Created

Date Created
2020