Matching Items (6)
Filtering by

Clear all filters

153317-Thumbnail Image.png
Description
Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission of indoor pollutants, indoor atmospheric chemistry and poor ventilation. Energy

Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission of indoor pollutants, indoor atmospheric chemistry and poor ventilation. Energy saving measures like retrofits to seal the building envelope to prevent the leakage of heated or cooled air will impact IAQ. However, existing studies have been inconclusive as to whether increased energy efficiency is leading to detrimental IAQ. In this work, field campaigns were conducted in apartment homes in Phoenix, Arizona to evaluate IAQ as it relates to particulate matter (PM), carbonyls, and tobacco specific nitrosamines (TSNA).

To investigate the impacts of an energy efficiency retrofit on IAQ, indoor and outdoor air quality sampling was carried out at Sunnyslope Manor, a city-subsidized senior living apartment complex. Measured indoor formaldehyde levels before the building retrofit exceeded reference exposure limits, but in the long term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long term follow-up sampling within certain resident subpopulations (i.e. residents who reported smoking and residents who had lived longer at the apartment complex). Additionally, indoor glyoxal and methylglyoxal exceeded outdoor concentrations, with methylglyoxal being more prevalent pre-retrofit than glyoxal, suggesting different chemical pathways are involved. Indoor concentrations reported are larger than previous studies. TSNAs, specifically N'-nitrosonornicotine (NNN), 4-(methyl-nitrosamino)-4-(3-pyridyl)-butanal (NNA) and 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK) were evaluated post-retrofit at Sunnyslope Manor. Of the units tested, 86% of the smoking units and 46% of the non-smoking units had traces of at least one of the nitrosamines.
ContributorsFrey, Sarah E (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew P (Thesis advisor) / Destaillats, Hugo (Committee member) / Chizmeshya, Andrew (Committee member) / Arizona State University (Publisher)
Created2014
157173-Thumbnail Image.png
Description
Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation

Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation and predicting future changes. Numerical studies on the climatic effect of desert urbanization have focused on basic meteorological fields such as temperature and wind. For desert cities, urban expansion can lead to substantial changes in the local production of wind-blown dust, which have implications for air quality and public health. This study expands the existing framework of numerical simulation for desert urbanization to include the computation of dust generation related to urban land-use changes. This is accomplished by connecting a suite of numerical models, including a meso-scale meteorological model, a land-surface model, an urban canopy model, and a turbulence model, to produce the key parameters that control the surface fluxes of wind-blown dust. Those models generate the near-surface turbulence intensity, soil moisture, and land-surface properties, which are used to determine the dust fluxes from a set of laboratory-based empirical formulas. This framework is applied to a series of simulations for the desert city of Erbil across a period of rapid urbanization. The changes in surface dust fluxes associated with urbanization are quantified. An analysis of the model output further reveals the dependence of surface dust fluxes on local meteorological conditions. Future applications of the models to environmental prediction are discussed.
ContributorsTahir, Sherzad Tahseen (Author) / Huang, Huei-Ping (Thesis advisor) / Phelan, Patrick (Committee member) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Clarke, Amanda (Committee member) / Arizona State University (Publisher)
Created2019
141424-Thumbnail Image.png
Description

To investigate the impacts of an energy efficiency retrofit, indoor air quality and resident health were evaluated at a low‐income senior housing apartment complex in Phoenix, Arizona, before and after a green energy building renovation. Indoor and outdoor air quality sampling was carried out simultaneously with a questionnaire to characterize

To investigate the impacts of an energy efficiency retrofit, indoor air quality and resident health were evaluated at a low‐income senior housing apartment complex in Phoenix, Arizona, before and after a green energy building renovation. Indoor and outdoor air quality sampling was carried out simultaneously with a questionnaire to characterize personal habits and general health of residents. Measured indoor formaldehyde levels before the building retrofit routinely exceeded reference exposure limits, but in the long‐term follow‐up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long‐term follow‐up sampling within certain resident subpopulations (i.e. residents who report smoking and residents who had lived longer at the apartment complex).

ContributorsFrey, S.E. (Author) / Destaillats, H. (Author) / Cohn, S. (Author) / Ahrentzen, S. (Author) / Fraser, M.P. (Author)
Created2015
Description

Quantifying halogen presence and speciation in particulate matter is crucial given the role atmospheric particulates play in transport and cycling. While some halogens (fluorine and chlorine) are often included in aerosol studies, iodine and bromine have rarely been examined, especially outside of a marine environment. Focus on this environment is,

Quantifying halogen presence and speciation in particulate matter is crucial given the role atmospheric particulates play in transport and cycling. While some halogens (fluorine and chlorine) are often included in aerosol studies, iodine and bromine have rarely been examined, especially outside of a marine environment. Focus on this environment is, in part, due to the existence of biogenic marine sources for both halogens. However, examining iodine and bromine in an urban environment has the potential to provide key insights into the transport and processing of these species in the atmosphere. As Tempe is set within a desert environment, bromine concentration is expected to be relatively high due to its presence in Earth’s crust, while iodine is expected to exist in higher concentrations near the coast. To detect presence and concentration, ICP-MS analysis was performed on samples taken in Tempe, AZ as well as sites in Bakersfield, CA and Davis, CA, which yielded preliminary results in line with these expectations. A secondary set of samples were taken in Tempe, AZ during dust storms, haboobs, and winter holidays. CIC was used to determine the organic fraction. In doing so, this study aims to identify species present in an urban environment as well as potential transportation pathways.

ContributorsLoera, Lourdes (Author) / Herckes, Pierre (Thesis director) / Richert, Ranko (Committee member) / Fraser, Matthew (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2023-05
Description
-Please adjust the format of the abstract. m-3 should be typed as "m to the minus 3" with the "minus 3" in superscript
-see the additional "abstract.pdf" document for formatting
In arid environments like Phoenix, many professional and residential outdoor spaces are cooled by the use of misting systems. These systems spray

-Please adjust the format of the abstract. m-3 should be typed as "m to the minus 3" with the "minus 3" in superscript
-see the additional "abstract.pdf" document for formatting
In arid environments like Phoenix, many professional and residential outdoor spaces are cooled by the use of misting systems. These systems spray a fine mist of water droplets that cool down the surrounding air through the endothermic evaporation process. When the water droplets evaporate, they leave behind dissolved material that is present in the water, generating ambient particulate matter (PM). Thus, misting systems are a point source of PM. Currently there is no information on their impact on air quality in close proximity to these systems, or on the chemical composition of the particulate matter generated by the evaporating mist.
In this project, PM concentrations are found to increase on average by a factor of 8 from ambient levels in the vicinity of a residential misting system in controlled experiments. PM concentrations in public places that use misting systems are also investigated. The PM10 concentrations in public places ranged from 0.102 ± 0.010 mg m-3 to 1.47 ± 0.15 mg m-3, and PM2.5 ranged from 0.095 ± 0.010 mg m-3 to 0.99 ± 0.10 mg m-3. Air quality index (AQI) values based on these concentrations indicate that these levels of PM range from unhealthy to hazardous in most cases. PM concentrations tend to decrease after remaining relatively constant with increasing distance from misting systems. Chemical data reveal that chloride and magnesium ions may be used as tracers of aerosolized water from misting systems. The average chloride concentration was 71 µg m-3 in misting samples and below the detection limit for Cl- (< 8.2 µg m-3) in ambient samples. The average magnesium concentration was 11.7 µg m-3 in misting samples and 0.23 µg m-3 in ambient samples.
ContributorsKnight, William Louis (Co-author) / Knight, William (Co-author) / Herckes, Pierre (Thesis director) / Fraser, Matthew (Committee member) / Hamilton, Kerry (Committee member) / School of Sustainability (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
156640-Thumbnail Image.png
Description
Atmospheric particulate matter (PM) has a pronounced effect on our climate, and exposure to PM causes negative health outcomes and elevated mortality rates in urban populations. Reactions that occur in fog can form new secondary organic aerosol material from gas-phase species or primary organic aerosols. It is important to understand

Atmospheric particulate matter (PM) has a pronounced effect on our climate, and exposure to PM causes negative health outcomes and elevated mortality rates in urban populations. Reactions that occur in fog can form new secondary organic aerosol material from gas-phase species or primary organic aerosols. It is important to understand these reactions, as well as how organic material is scavenged and deposited, so that climate and health effects can be fully assessed. Stable carbon isotopes have been used widely in studying gas- and particle-phase atmospheric chemistry. However, the processing of organic matter by fog has not yet been studied, even though stable isotopes can be used to track all aspects of atmospheric processing, from particle formation, particle scavenging, reactions that form secondary organic aerosol material, and particle deposition. Here, carbon isotope analysis is used for the first time to assess the processing of carbonaceous particles by fog.

This work first compares carbon isotope measurements (δ13C) of particulate matter and fog from locations across the globe to assess how different primary aerosol sources are reflected in the atmosphere. Three field campaigns are then discussed that highlight different aspects of PM formation, composition, and processing. In Tempe, AZ, seasonal and size-dependent differences in the δ13C of total carbon and n-alkanes in PM were studied. δ13C was influenced by seasonal trends, including inversion, transport, population density, and photochemical activity. Variations in δ13C among particle size fractions were caused by sources that generate particles in different size modes.

An analysis of PM from urban and suburban sites in northeastern France shows how both fog and rain can cause measurable changes in the δ13C of PM. The δ13C of PM was consistent over time when no weather events occurred, but particles were isotopically depleted by up to 1.1‰ in the presence of fog due to preferential scavenging of larger isotopically enriched particles. Finally, the δ13C of the dissolved organic carbon in fog collected on the coast of Southern California is discussed. Here, temporal depletion of the δ13C of fog by up to 1.2‰ demonstrates its use in observing the scavenging and deposition of organic PM.
ContributorsNapolitano, Denise (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2018