Matching Items (3)

Filtering by

Clear all filters

151051-Thumbnail Image.png

Matching supply and demand using dynamic quotation strategies

Description

Today's competitive markets force companies to constantly engage in the complex task of managing their demand. In make-to-order manufacturing or service systems, the demand of a product is shaped by price and lead times, where high price and lead time

Today's competitive markets force companies to constantly engage in the complex task of managing their demand. In make-to-order manufacturing or service systems, the demand of a product is shaped by price and lead times, where high price and lead time quotes ensure profitability for supplier, but discourage the customers from placing orders. Low price and lead times, on the other hand, generally result in high demand, but do not necessarily ensure profitability. The price and lead time quotation problem considers the trade-off between offering high and low prices and lead times. The recent practices in make-to- order manufacturing companies reveal the importance of dynamic quotation strategies, under which the prices and lead time quotes flexibly change depending on the status of the system. In this dissertation, the objective is to model a make-to-order manufacturing system and explore various aspects of dynamic quotation strategies such as the behavior of optimal price and lead time decisions, the impact of customer preferences on optimal decisions, the benefits of employing dynamic quotation in comparison to simpler quotation strategies, and the benefits of coordinating price and lead time decisions. I first consider a manufacturer that receives demand from spot purchasers (who are quoted dynamic price and lead times), as well as from contract customers who have agree- ments with the manufacturer with fixed price and lead time terms. I analyze how customer preferences affect the optimal price and lead time decisions, the benefits of dynamic quo- tation, and the optimal mix of spot purchaser and contract customers. These analyses necessitate the computation of expected tardiness of customer orders at the moment cus- tomer enters the system. Hence, in the second part of the dissertation, I develop method- ologies to compute the expected tardiness in multi-class priority queues. For the trivial single class case, a closed formulation is obtained. For the more complex multi-class case, numerical inverse Laplace transformation algorithms are developed. In the last part of the dissertation, I model a decentralized system with two components. Marketing department determines the price quotes with the objective of maximizing revenues, and manufacturing department determines the lead time quotes to minimize lateness costs. I discuss the ben- efits of coordinating price and lead time decisions, and develop an incentivization scheme to reduce the negative impacts of lack of coordination.

Contributors

Agent

Created

Date Created
2012

152768-Thumbnail Image.png

Surgical instrument reprocessing in a hospital setting analyzed with statistical process control and data mining techniques

Description

In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments.

In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact patient safety and hospital revenue. Any time instrumentation or devices are not available or are not fit for use, patient safety and revenue can be negatively impacted. One step of the instrument reprocessing cycle is sterilization. Steam sterilization is the sterilization method used for the majority of surgical instruments and is preferred to immediate use steam sterilization (IUSS) because terminally sterilized items can be stored until needed. IUSS Items must be used promptly and cannot be stored for later use. IUSS is intended for emergency situations and not as regular course of action. Unfortunately, IUSS is used to compensate for inadequate inventory levels, scheduling conflicts, and miscommunications. If IUSS is viewed as an adverse event, then monitoring IUSS incidences can help healthcare organizations meet patient safety goals and financial goals along with aiding in process improvement efforts. This work recommends statistical process control methods to IUSS incidents and illustrates the use of control charts for IUSS occurrences through a case study and analysis of the control charts for data from a health care provider. Furthermore, this work considers the application of data mining methods to IUSS occurrences and presents a representative example of data mining to the IUSS occurrences. This extends the application of statistical process control and data mining in healthcare applications.

Contributors

Agent

Created

Date Created
2014

153604-Thumbnail Image.png

Monitoring complex supply chains

Description

The complexity of supply chains (SC) has grown rapidly in recent years, resulting in an increased difficulty to evaluate and visualize performance. Consequently, analytical approaches to evaluate SC performance in near real time relative to targets and plans are important

The complexity of supply chains (SC) has grown rapidly in recent years, resulting in an increased difficulty to evaluate and visualize performance. Consequently, analytical approaches to evaluate SC performance in near real time relative to targets and plans are important to detect and react to deviations in order to prevent major disruptions.

Manufacturing anomalies, inaccurate forecasts, and other problems can lead to SC disruptions. Traditional monitoring methods are not sufficient in this respect, because com- plex SCs feature changes in manufacturing tasks (dynamic complexity) and carry a large number of stock keeping units (detail complexity). Problems are easily confounded with normal system variations.

Motivated by these real challenges faced by modern SC, new surveillance solutions are proposed to detect system deviations that could lead to disruptions in a complex SC. To address supply-side deviations, the fitness of different statistics that can be extracted from the enterprise resource planning system is evaluated. A monitoring strategy is first proposed for SCs featuring high levels of dynamic complexity. This presents an opportunity for monitoring methods to be applied in a new, rich domain of SC management. Then a monitoring strategy, called Heat Map Contrasts (HMC), which converts monitoring into a series of classification problems, is used to monitor SCs with both high levels of dynamic and detail complexities. Data from a semiconductor SC simulator are used to compare the methods with other alternatives under various failure cases, and the results illustrate the viability of our methods.

To address demand-side deviations, a new method of quantifying forecast uncer- tainties using the progression of forecast updates is presented. It is illustrated that a rich amount of information is available in rolling horizon forecasts. Two proactive indicators of future forecast errors are extracted from the forecast stream. This quantitative method re- quires no knowledge of the forecasting model itself and has shown promising results when applied to two datasets consisting of real forecast updates.

Contributors

Agent

Created

Date Created
2015