Matching Items (8)
Filtering by

Clear all filters

134177-Thumbnail Image.png
Description
Buck converters are a class of switched-mode power converters often used to step down DC input voltages to a lower DC output voltage. These converters naturally produce a current and voltage ripple at their output due to their switching action. Traditional methods of reducing this ripple have involved adding large

Buck converters are a class of switched-mode power converters often used to step down DC input voltages to a lower DC output voltage. These converters naturally produce a current and voltage ripple at their output due to their switching action. Traditional methods of reducing this ripple have involved adding large discrete inductors and capacitors to filter the ripple, but large discrete components cannot be integrated onto chips. As an alternative to using passive filtering components, this project investigates the use of active ripple cancellation to reduce the peak output ripple. Hysteretic controlled buck converters were chosen for their simplicity of design and fast transient response. The proposed cancellation circuits sense the output ripple of the buck converter and inject an equal ripple exactly out of phase with the sensed ripple. Both current-mode and voltage-mode feedback loops are simulated, and the effectiveness of each cancellation circuit is examined. Results show that integrated active ripple cancellation circuits offer a promising substitute for large discrete filters.
ContributorsWang, Ziyan (Author) / Bakkaloglu, Bertan (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
132872-Thumbnail Image.png
Description
This thesis outlines the hand-held memory characterization testing system that is to be created into a PCB (printed circuit board). The circuit is designed to apply voltages diagonally through a RRAM cell (32x32 memory array). The purpose of this sweep across the RRAM is to measure and calculate the high

This thesis outlines the hand-held memory characterization testing system that is to be created into a PCB (printed circuit board). The circuit is designed to apply voltages diagonally through a RRAM cell (32x32 memory array). The purpose of this sweep across the RRAM is to measure and calculate the high and low resistance state value over a specified amount of testing cycles. With each cell having a unique output of high and low resistance states a unique characterization of each RRAM cell is able to be developed. Once the memory is characterized, the specific RRAM cell that was tested is then able to be used in a varying amount of applications for different things based on its uniqueness. Due to an inability to procure a packaged RRAM cell, a Mock-RRAM was instead designed in order to emulate the same behavior found in a RRAM cell.
The final testing circuit and Mock-RRAM are varied and complex but come together to be able to produce a measured value of the high resistance and low resistance state. This is done by the Arduino autonomously digitizing the anode voltage, cathode voltage, and output voltage. A ramp voltage that sweeps from 1V to -1V is applied to the Mock-RRAM acting as an input. This ramp voltage is then later defined as the anode voltage which is just one of the two nodes connected to the Mock-RRAM. The cathode voltage is defined as the other node at which the voltage drops across the Mock-RRAM. Using these three voltages as input to the Arduino, the Mock-RRAM path resistance is able to be calculated at any given point in time. Conducting many test cycles and calculating the high and low resistance values allows for a graph to be developed of the chaotic variation of resistance state values over time. This chaotic variation can then be analyzed further in the future in order to better predict trends and characterize the RRAM cell that was tested.
Furthermore, the interchangeability of many devices on the PCB allows for the testing system to do more in the future. Ports have been added to the final PCB in order to connect a packaged RRAM cell. This will allow for the characterization of a real RRAM memory cell later down the line rather than a Mock-RRAM as emulation. Due to the autonomous testing, very few human intervention is needed which makes this board a great baseline for others in the future looking to add to it and collect larger pools of data.
ContributorsDobrin, Ryan Christopher (Co-author) / Halden, Matthew (Co-author) / Hall, Tanner (Co-author) / Barnaby, Hugh (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
147550-Thumbnail Image.png
Description

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting from an environmental input. The general idea of this honors project was to design three frequency selective surfaces that would act as surrogate backscattering or reflecting targets that each contains a distinct frequency response. Using 3-D electromagnetic simulation software, three surrogate targets exhibiting bandpass frequency responses at distinct frequencies were designed and presented in this thesis.

ContributorsSisk, Ryan Derek (Author) / Aberle, James (Thesis director) / Chakraborty, Partha (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132326-Thumbnail Image.png
Description
The focus of this project investigates high mobility robotics by developing a fully integrated framework for a ball-balancing robot. Using Lagrangian mechanics, a model for the robot was derived and used to conduct trade studies on significant system parameters. With a broad understanding of system dynamics, controllers were designed using

The focus of this project investigates high mobility robotics by developing a fully integrated framework for a ball-balancing robot. Using Lagrangian mechanics, a model for the robot was derived and used to conduct trade studies on significant system parameters. With a broad understanding of system dynamics, controllers were designed using LQR methodology. A prototype was then built and tested to exhibit desired reference command following and disturbance attenuation.
ContributorsKapron, Mark Andrew (Author) / Rodriguez, Armando (Thesis director) / Artemiadis, Panagiotis (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132563-Thumbnail Image.png
Description
Analog to Digital Converters (ADCs) are a critical component in modern circuit applications. ADCs are used in virtually every application in which a digital circuit is interacting with data from the real world, ranging from commercial applications to crucial military and aerospace applications, and are especially important when interacting with

Analog to Digital Converters (ADCs) are a critical component in modern circuit applications. ADCs are used in virtually every application in which a digital circuit is interacting with data from the real world, ranging from commercial applications to crucial military and aerospace applications, and are especially important when interacting with sensors that observe environmental factors. Due to the critical nature of these converters, as well as the vast range of environments in which they are used, it is important that they accurately sample data regardless of environmental factors. These environmental factors range from input noise and power supply variations to temperature and radiation, and it is important to know how each may affect the accuracy of the resulting data when designing circuits that depend upon the data from these ADCs. These environmental factors are considered hostile environments, as they each generally have a negative effect on the operation of an ADC. This thesis seeks to investigate the effects of several of these hostile environmental variables on the performance of analog to digital converters. Three different analog to digital converters with similar specifications were selected and analyzed under common hostile environments. Data was collected on multiple copies of an ADC and averaged together to analyze the results using multiple characteristics of converter performance. Performance metrics were obtained across a range of frequencies, input noise, input signal offsets, power supply voltages, and temperatures. The obtained results showed a clear decrease in performance farther from a room temperature environment, but the results for several other environmental variables showed either no significant correlation or resulted in inconclusive data.
ContributorsSwanson, Taylor Catherine (Co-author) / Millman, Hershel (Co-author) / Barnaby, Hugh (Thesis director) / Garrity, Douglas (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165756-Thumbnail Image.png
Description
This thesis is done as an extension of the development of an electrical engineering capstone project. The goal of the capstone is to create a system that can receive a 2.4 GHz Wi-Fi signal out to a range of 300 meters and then use it to point in the direction

This thesis is done as an extension of the development of an electrical engineering capstone project. The goal of the capstone is to create a system that can receive a 2.4 GHz Wi-Fi signal out to a range of 300 meters and then use it to point in the direction of a given Wi-Fi source. The design process of the capstone system is described in depth and the results of the proposed design are presented. The thesis work explores how this system can achieve a dual band capability at both 2.4 GHz and 5 GHz Wi-Fi bands. So, a slotted patch antenna system with a slotted ground plane was designed and tested and proved to deliver the ideal characteristics for accurate signal tracking.
Contributorsde la Rosa, Jesus (Author) / Aberle, James (Thesis director) / Lewis, John (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05
165040-Thumbnail Image.png
Description
The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments and maladies. Short wavelengths accompany the high frequencies present in

The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments and maladies. Short wavelengths accompany the high frequencies present in high-field MRI, and are on the same scale as the human body at a static magnetic field strength of 3 T (128 MHz). As a result of these shorter wavelengths, standing wave effects are produced in the MR bore where the patient is located. These standing waves generate bright and dark spots in the resulting MR image, which correspond to irregular regions of high and low clarity. Coil loading is also an inevitable byproduct of subject positioning inside the bore, which decreases the signal that the region of interest (ROI) receives for the same input power. Several remedies have been proposed in the literature to remedy the standing wave effect, including the placement of high permittivity dielectric pads (HPDPs) near the ROI. Despite the success of HPDPs at smoothing out image brightness, these pads are traditionally bulky and take up a large spatial volume inside the already small MR bore. In recent years, artificial periodic structures known as metamaterials have been designed to exhibit specific electromagnetic effects when placed inside the bore. Although typically thinner than HPDPs, many metamaterials in the literature are rigid and cannot conform to the shape of the patient, and some are still too bulky for practical use in clinical settings. The well-known antenna engineering concept of fractalization, or the introduction of self-similar patterns, may be introduced to the metamaterial to display a specific resonance curve as well as increase the metamaterial’s intrinsic capacitance. Proposed in this paper is a flexible fractal-inspired metamaterial for application in 3 T MR head imaging. To demonstrate the advantages of this flexibility, two different metamaterial configurations are compared to determine which produces a higher localized signal-to-noise ratio (SNR) and average signal measured in the image: in the first configuration, the metamaterial is kept rigid underneath a human head phantom to represent metamaterials in the literature (single-sided placement); and in the second, the metamaterial is wrapped around the phantom to utilize its flexibility (double-sided placement). The double-sided metamaterial setup was found to produce an increase in normalized SNR of over 5% increase in five of six chosen ROIs when compared to no metamaterial use and showed a 10.14% increase in the total average signal compared to the single-sided configuration.
ContributorsSokol, Samantha (Author) / Sohn, Sung-Min (Thesis director) / Allee, David (Committee member) / Jones, Anne (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05
161075-Thumbnail Image.png
Description

This project examines the dynamics and design of control systems for a rocket in propulsive ascent and descent using a simplified model with motion constrained to a vertical plane. The governing differential equations are analyzed. They are then linearized, after which transfer functions are derived relating controllable input variables to

This project examines the dynamics and design of control systems for a rocket in propulsive ascent and descent using a simplified model with motion constrained to a vertical plane. The governing differential equations are analyzed. They are then linearized, after which transfer functions are derived relating controllable input variables to controlled output variables. The effect of changes in various parameters as well as other aspects of the system are examined. Methods for controller design based on the derived transfer functions are discussed. This will include the discussion of control of the final descent and landing of the rocket. Lastly, there is a brief discussion about both the successes and limitations of the model analyzed.

ContributorsWarner, Adin (Author) / Rodriguez, Armando (Thesis director) / Shafique, Ashfaque (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2021-12