Matching Items (8)
Filtering by

Clear all filters

151709-Thumbnail Image.png
Description
Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of

Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of five AWS and five paired control sites (treatments) in the surrounding Sonoran desert from October 2011 to May 2012. I measured plant species richness, density, and percent cover in the spring of 2012. A Multi-response Permutation Procedure was used to identify differences in small mammal community abundance, biomass, and species richness by season and treatment. I used Principle Component Analysis to reduce 11 habitat characteristics to five habitat factors. I related rodent occurrence to habitat characteristics using multiple and logistic regression. A total of 370 individual mammals representing three genera and eight species of rodents were captured across 4800 trap nights. Desert pocket mouse (Chaetodipus penicillatus) was the most common species in both seasons and treatments. Whereas rodent community abundance, biomass, and richness were similar between seasons, community variables of AWS were greater than CS. Rodent diversity was similar between treatments. Desert pocket mouse abundance and biomass were twice as high at AWS when compared to controls. Biomass of white-throated woodrat (Neotoma albigula) was five times greater at AWS. Habitat characteristics were similar between treatments. Neither presence of water nor distance to water explained substantial habitat variation. Occurrence of rodent species was associated with habitat characteristics. Desert rodent communities are adapted for arid environments (i.e. Heteromyids) and are not dependent on "free water". Higher abundances of desert pocket mouse at AWS were most likely related to increased disturbance and debris and not the presence of water. The results of this study and previous studies suggest that more investigation is needed and that short term studies may not be able to detect interactions (if any) between AWS and desert small mammal communities.
ContributorsSwitalski, Aaron (Author) / Bateman, Heather L (Thesis advisor) / Miller, William (Committee member) / Alford, Eddie (Committee member) / Arizona State University (Publisher)
Created2013
151016-Thumbnail Image.png
Description
Human recreation on rangelands may negatively impact wildlife populations. Among those activities, off-road vehicle (ORV) recreation carries the potential for broad ecological consequences. A study was undertaken to assess the impacts of ORV on rodents in Arizona Uplands Sonoran Desert. Between the months of February and September 2010, rodents were

Human recreation on rangelands may negatively impact wildlife populations. Among those activities, off-road vehicle (ORV) recreation carries the potential for broad ecological consequences. A study was undertaken to assess the impacts of ORV on rodents in Arizona Uplands Sonoran Desert. Between the months of February and September 2010, rodents were trapped at 6 ORV and 6 non-ORV sites in Tonto National Forest, AZ. I hypothesized that rodent abundance and species richness are negatively affected by ORV use. Rodent abundances were estimated using capture-mark-recapture methodology. Species richness was not correlated with ORV use. Although abundance of Peromyscus eremicus and Neotoma albigula declined as ORV use increased, abundance of Dipodomys merriami increased. Abundance of Chaetodipus baileyi was not correlated with ORV use. Other factors measured were percent ground cover, percent shrub cover, and species-specific shrub cover percentages. Total shrub cover, Opuntia spp., and Parkinsonia microphylla each decreased as ORV use increased. Results suggest that ORV use negatively affects rodent habitats in Arizona Uplands Sonoran Desert, leading to declining abundance in some species. Management strategies should mitigate ORV related habitat destruction to protect vulnerable populations.
ContributorsReid, John Simon (Author) / Brady, Ward (Thesis advisor) / Miller, William (Committee member) / Bateman, Heather (Committee member) / Arizona State University (Publisher)
Created2012
137103-Thumbnail Image.png
Description
The effects of biocontrol and the potential risks associated with them are of interest to many researchers. In the Virgin River area of Nevada, natural resource managers have done studies of various removal techniques on the non-native Tamarix spp. strands. One such area of focus is the use of biocontrol

The effects of biocontrol and the potential risks associated with them are of interest to many researchers. In the Virgin River area of Nevada, natural resource managers have done studies of various removal techniques on the non-native Tamarix spp. strands. One such area of focus is the use of biocontrol in the form of the tamarisk leaf beetle (Diorhabda spp.), and the resulting changes in the environment from the defoliation of the trees. Previous studies have shown that removal of the plants can potentially be beneficial to lizards. But do changes in the environment change the amount of food available? We were interested to see if the amount of arthropod biomass from these areas had a relationship with the lizard abundance. Taking arthropod collection data from the Virgin River, we compared it with arthropod data over several years, before and after Diorhabda was introduced in 2010. Arthropod biomass data was obtained by taking the collected arthropods and drying them in an oven and weighing them. Results show that there is no correlation between the arthropod numbers or biomass with the amount of lizards in the area, that biomass was greatest after biocontrol introduction, and biomass was highest in mixed Tamarix and native tree strands versus just Tamarix strands. In conclusion, arthropod numbers and biomass have shown to be a poor indicator of lizard abundance, and factors such as temperature changes in the environment might be a better indicator of the changing abundance of lizards.
ContributorsPicciano, Melanie Erin (Author) / Bateman, Heather (Thesis director) / Barnard, James (Committee member) / Barrett, The Honors College (Contributor) / School of Letters and Sciences (Contributor)
Created2014-05
154676-Thumbnail Image.png
Description
Urban riparian corridors have the capacity to maintain high levels of abundance and biodiversity. Additionally, urban rivers also offer environmental amenities and can be catalysts for social and economic revitalization in human communities. Despite its importance for both humans and wildlife, blue space in cities used by waterbirds has received

Urban riparian corridors have the capacity to maintain high levels of abundance and biodiversity. Additionally, urban rivers also offer environmental amenities and can be catalysts for social and economic revitalization in human communities. Despite its importance for both humans and wildlife, blue space in cities used by waterbirds has received relatively little focus in urban bird studies. My principal objective was to determine how urbanization and water availability affect waterbird biodiversity in an arid city. I surveyed 36 transects stratified across a gradient of urbanization and water availability along the Salt River, a LTER long-term study system located in Phoenix, Arizona. Water physiognomy (shape and size) was the largest factor in shaping the bird community. Connectivity was an important element for waterbird diversity, but not abundance. Urbanization had guild-specific effects on abundance but was not important for waterbird diversity. Habitat-level environmental characteristics were more important than land use on waterbird abundance, as well as diversity. Diving and fish-eating birds were positively associated with large open bodies of water, whereas dabbling ducks, wading birds, and marsh species favored areas with large amounts of shoreline and emergent vegetation. My study supports that Phoenix blue space offers an important subsidy to migrating waterbird communities; while alternative habitat is not a replacement, it is important to consider as part of the larger conservation picture as traditional wetlands decline. Additionally, arid cities have the potential to support high levels of waterbird biodiversity, heterogeneous land use matrix can be advantageous in supporting regional diversity, and waterbirds are tolerant of urbanization if proper resources are provided via the habitat. The implications of this study are particularly relevant to urban planning in arid cities; Phoenix alone contains over 1,400 bodies of water, offering the opportunity to design and improve urban blue space to optimize potential habitat while providing public amenities.
ContributorsBurnette, Riley (Author) / Bateman, Heather (Thesis advisor) / Franklin, Janet (Committee member) / Allen, Daniel (Committee member) / Arizona State University (Publisher)
Created2016
Description
Urban wetland ecosystems provide myriad ecosystem services and are shaped by diverse social and ecological factors. In rapidly urbanizing parts of the desert Southwest, wetlands are especially vital. Across less than 60 km as it enters the Phoenix area, the Salt River is dammed, diverted, re-filled, clear-cut, restored, and ignored.

Urban wetland ecosystems provide myriad ecosystem services and are shaped by diverse social and ecological factors. In rapidly urbanizing parts of the desert Southwest, wetlands are especially vital. Across less than 60 km as it enters the Phoenix area, the Salt River is dammed, diverted, re-filled, clear-cut, restored, and ignored. This study documents how animal and plant communities in three perennially inundated reaches of the river changed over a decade under different social-ecological pressures. One wetland in the urban core is restored, another formed accidentally by human infrastructure, and the last is managed on the urban periphery. Surveys conducted since 2012 used point-count surveys to assess bird communities and visual encounter surveys to assess reptiles and amphibians. Plant communities were surveyed in 2012 and 2022 using cover classes. Between 2012 and 2022, accidental and restored wetlands close to the urban core displayed an increase in plant abundance, largely consisting of introduced species. While all sites saw an increase in plant species considered invasive by land management groups, both urban wetlands saw an increase in regionally native species, including plants that are culturally significant to local Indigenous groups. Reptile communities declined in richness and abundance in both urban sites, but birds grew in abundance and richness at the urban restored site while not changing at the urban accidental wetland. The non-urban site saw stable populations of both birds and herpetofauna. These trends in biotic communities reveal ecological tradeoffs under different management strategies for urban wetlands. These findings also create a portrait of wetland communities along a rapidly urbanizing arid river. As the Salt River watershed becomes more urbanized, it is important to establish a more empathetic and informed relationship between its plant and animal—including human—residents. To this end, these data were incorporated in a series of handmade paper artworks, crafted from the most abundant wetland plant species found at the study sites, harvested alongside local land management efforts. These artworks examine the potential of four common cosmopolitan wetland plants for papermaking, revealing the potential to align ecosystem management efforts with both materials production and fine arts. By using relief printmaking to visualize long-term ecological data, I explored an alternative, more creative and embodied way to engage with and visualize urban wetland communities. This alternate mode of engagement can complement ecological management and research to diversify disciplines and participants engaged with understanding and living alongside urban wetlands.
ContributorsRamsey-Wiegmann, Luke Dawson (Author) / Childers, Daniel L (Thesis advisor) / Makings, Elizabeth (Committee member) / Bateman, Heather (Committee member) / Arizona State University (Publisher)
Created2023
161793-Thumbnail Image.png
Description
Spatial and temporal patterns of biodiversity are shaped, in part, by the resources available to biota, the efficiency of resource transfer through the food web, and variation in environmental conditions. Stream and riparian zones are dynamic systems connected through reciprocal resource exchange and shaped by floods, droughts, and long-term patterns

Spatial and temporal patterns of biodiversity are shaped, in part, by the resources available to biota, the efficiency of resource transfer through the food web, and variation in environmental conditions. Stream and riparian zones are dynamic systems connected through reciprocal resource exchange and shaped by floods, droughts, and long-term patterns in the quantity, timing, and variability of streamflow (flow regime). The interdependent nature of the stream-riparian ecosystem defies the scope of any single discipline, requiring novel approaches to untangle the controls on ecological processes. In this dissertation, I explored multiple mechanisms through which streamflow and energy flow pathways maintain the community and trophic dynamics of desert stream and riparian food webs. I conducted seasonal sampling of Arizona streams on a gradient of flow regime variability to capture fluctuations in aquatic communities and ecosystem production. I found that flow regime shapes fish community structure and the trajectory of community response following short-term flow events by constraining the life history traits of communities, which fluctuate in prevalence following discrete events. Streamflow may additionally constrain the efficiency of energy flow from primary producers to consumers. I estimated annual food web efficiency and found that efficiency decreased with higher temperature and more variable flow regime. Surprisingly, fish production was not related to the rate of aquatic primary production. To understand the origin of resources supporting aquatic and riparian food webs, I studied the contribution of aquatic and terrestrial primary production to consumers in both habitats. I demonstrated that emergent insects “recycled” terrestrial primary production back to the riparian zone, reducing the proportion of aquatic primary production in emergent insect biomass and riparian predator diet. To expand the concept of stream and riparian zones as an integrated ecosystem connected by resource cycling through the food web, I introduced a quantitative framework describing reciprocal interconnections across spatial boundaries and demonstrated strong aquatic-riparian interdependencies along an Arizona river. In this dissertation, I develop a novel perspective on the stream-riparian ecosystem as an intertwined food web, which may be vulnerable to unforeseen impacts of global change if not considered in the context of streamflow and resource dynamics.
ContributorsBaruch, Ethan Max (Author) / Sabo, John (Thesis advisor) / Bateman, Heather (Committee member) / Cease, Arianne (Committee member) / Grimm, Nancy (Committee member) / Arizona State University (Publisher)
Created2021
Description
My thesis/creative project is a series of videos, supplemented by a paper documenting all the research. The project focuses on domestic and feral cats through the viewpoint of the “warrior cats” book series. The use of a particular fandom as a vehicle for science communication is a unique platform for

My thesis/creative project is a series of videos, supplemented by a paper documenting all the research. The project focuses on domestic and feral cats through the viewpoint of the “warrior cats” book series. The use of a particular fandom as a vehicle for science communication is a unique platform for use as a thesis/creative project. The narrated videos are made with the intention of being presented on YouTube or a similar viewing platform to an audience that is already familiar with the book series. The videos would fit on the site as a form of educational film known as video essays. The videos cover a range of topics to relate this book series to real situations with domestic animals, particularly cats, and wildlife. Each video is around ten to twenty minutes long and presented as episodes in a series.
The objective of my thesis project is to help bridge the gap between entertainment and science. I grew up reading the warrior cats, and I assume I was similar to many other children and young teens who did not understand domestic cats or ecology enough to question anything in the books. I know that much of these books are fictional, but that does not mean that it can’t be analyzed and used as a tool for teaching. The goal is to reach common ground with those people who have an interest in the warrior cats series, and help them understand it in a new light, as well as the world around them. I aim for the takeaway of this series to encourage people to explore the concepts I discuss and consider expanding upon the ideas within the Warriors universe or with their own cats.
ContributorsGarcia, Johnny Nico (Author) / Bateman, Heather (Thesis director) / Meloy, Elizabeth (Committee member) / College of Integrative Sciences and Arts (Contributor, Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
190912-Thumbnail Image.png
Description
As white-nose syndrome (WNS) spreads across North America, generating baseline data on bats hibernating outside of the affected area is critical. To illustrate, despite the imminent arrival of Pseudogymnoascus destructans (Pd) to Arizona (AZ), little is known about bat hibernation in the Southwest. With the current amount of information, if

As white-nose syndrome (WNS) spreads across North America, generating baseline data on bats hibernating outside of the affected area is critical. To illustrate, despite the imminent arrival of Pseudogymnoascus destructans (Pd) to Arizona (AZ), little is known about bat hibernation in the Southwest. With the current amount of information, if Pd spreads throughout the state, detection of cases would be limited, and severity of disease and magnitude of mortality impossible to accurately estimate. Thus, my study monitored hibernating bats in AZ to increase knowledge and investigate potential WNS impacts on these populations. Utilizing passive acoustic monitoring, internal cave surveys, environmental monitoring, and thermal imaging, my study quantified microclimate preferences, hibernation lengths, hibernation behaviors, population dynamics, and species compositions of bats hibernating in three north-central AZ caves. Hibernation lasted between 104 and 162 days, from late October through mid- March, during which time bats (primarily Corynorhinus townsendii and Myotis species) roosted at locations with an average of 4.7oC (range = -0.2oC – 12.1oC), 59.6% relative humidity (range = 39.6% - 75.9%), and 0.4 kPa water vapor pressure deficit (range = 0.2 kPa – 0.8 kPa). A maximum of 40 individuals were observed in any hibernacula and clustering behavior occurred in only 4.1% of torpid bats. Bats selected cold and dry roost sites within caves. Results suggest Pd could proliferate on some bats hibernating in colder areas of AZ hibernacula, yet the range of observed roost humidities was lower than optimal for Pd growth. Hibernation length in north-central AZ is longer than predicted for Myotis species at similar latitudes and may be long enough to pose over- winter survival risks if WNS emerges in AZ populations. Yet, a natural tendency for mid-winter activity, which I observed by multiple species, may allow for foraging opportunities and water replenishment, and therefore promote survival in bats utilizing these arid and cold habitats in winter. Additionally, the relatively solitary behaviors I observed, including virtually no clustering activity and a maximum of 40 bats per hibernacula, may keep rates of Pd transmission low in these Southwest bat populations.
ContributorsHutcherson, Hayden K (Author) / Bateman, Heather (Thesis advisor) / Moore, Marianne (Committee member) / Lewis, Jesse (Committee member) / Arizona State University (Publisher)
Created2023