Matching Items (25)
Filtering by

Clear all filters

136641-Thumbnail Image.png
Description
This paper explores the relationship between wildfire management and the consideration of ecological and environmental concerns in Arizona. To get a proper perspective on the current state of wildfire management in Arizona, information on two wildfire management programs, the Four Forests Restoration Initiative and FireScape, was researched and analyzed, as

This paper explores the relationship between wildfire management and the consideration of ecological and environmental concerns in Arizona. To get a proper perspective on the current state of wildfire management in Arizona, information on two wildfire management programs, the Four Forests Restoration Initiative and FireScape, was researched and analyzed, as well as contemporary fire policy, a history of wildfire in Arizona, and two recent fires in Sedona, AZ. The two fires in Sedona, the Brins Fire of 2006 and the Slide Fire of 2014, act as a focal point for this ecological management transition, as even within an 8-year period, we can see the different ways the two fires were managed and the transition to a greater ecological importance in management strategies. These all came together to give a full spectrum for the factors that have led to more ecologically-prominent wildfire management strategies in Arizona.
ContributorsGeorge-Sills, Dylan (Author) / Pyne, Stephen (Thesis director) / Hirt, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2015-05
136299-Thumbnail Image.png
Description
Water is the main driver of net primary productivity (NPP) in arid ecosystems, followed by nitrogen and phosphorous. Precipitation is the primary factor in determining water availability to plants, but other factors such as surface rocks could also have an impact. Surface rocks may positively affect water availability by preventing

Water is the main driver of net primary productivity (NPP) in arid ecosystems, followed by nitrogen and phosphorous. Precipitation is the primary factor in determining water availability to plants, but other factors such as surface rocks could also have an impact. Surface rocks may positively affect water availability by preventing evaporation from soil, but at higher densities, surface rocks may also have a negative impact on water availability by limiting water infiltration or light availability. However, the direct relationship between rock cover and aboveground net primary productivity (ANPP), a proxy for NPP, is not well understood. In this research we explore the relationship between rock cover, ANPP, and soil nutrient availability. We conducted a rock cover survey on long-term fertilized plots at fifteen sites in the Sonoran Desert and used 4 years of data from annual plant biomass surveys to determine the relationship between peak plant biomass and surface rock cover. We performed factorial ANCOVA to assess the relationship among annual plant biomass, surface rocks, precipitation, and fertilization treatment. Overall we found that precipitation, nutrients, and rock cover influence growth of Sonoran Desert annual plants. Rock cover had an overall negative relationship with annual plant biomass, but did not show a consistent pattern of significance over four years of study and with varying average winter precipitation.
ContributorsShaw, Julea Anne (Author) / Hall, Sharon (Thesis director) / Sala, Osvaldo (Committee member) / Cook, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133966-Thumbnail Image.png
Description
In today's world, critical thinking and using a systems approach to problem solving are skills that are far too rare. In the age of information, the truth has become muddled by "fake news" and a constant barrage of exaggerations or blatant falsehoods. Without critical thinking skills, "many members of our

In today's world, critical thinking and using a systems approach to problem solving are skills that are far too rare. In the age of information, the truth has become muddled by "fake news" and a constant barrage of exaggerations or blatant falsehoods. Without critical thinking skills, "many members of our society do not command the scientific literacy necessary to address important societal issues and concerns" (NCES 2012, p.11). Additionally, far too many people are incapable of thinking long term and understanding how their actions affect others. Because of this shortsightedness our world is facing one of its biggest ecological crises \u2014 global warming confounded by overpopulation and overconsumption. Now, more than ever, it is critical "for our young people to have a basic understanding of the relevant scientific ideas, technologies and ethical issues and powers of reasoning, to be prepared to face these issues" (Harlen et al., 2015). I believe that investigating innovative ways to teach ecology could be an important step to accomplishing this. Learning to think like a scientist forces people to rely on facts, follow similar protocols to deduce these facts, and be able to think critically about misleading events. More specifically, ecology education will allow people to develop those skills while also learning about team work, open-mindedness, and their environment. Ecology is defined as "the branch of biology that deals with the relations of organisms to one another and to their physical surroundings" (Dictionary.com, 2018). It is clear that this subcategory of science could act as a powerful introduction to the scientific world and how we relate to it. Its introduction at a young age has the potential to create a generation of conscientious and curious lifelong learners. In an attempt to support effective ways to teach ecology, I developed an educational unit and applied it in different educational contexts. My target audience was elementary aged students and I tested this unit with children in Phoenix Metropolitan Area afterschool programs. I taught core concepts of ecology \u2014 the water cycle, the sun's energy, plants and photosynthesis, and food webs \u2014in a sequence of lesson plans that build upon each other. Finally, I determined the appropriate age group and setting for these lesson plans through research and in-class observations. In this document, I explain the process I went through in developing my lesson plans, why I felt compelled to make them, and my experiences in implementing them.
ContributorsVotaw, Alexandra Lindsay (Author) / Larson, Kelli (Thesis director) / Herrmann, Lisa (Committee member) / York, Abigail (Committee member) / School of Art (Contributor) / The Design School (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133650-Thumbnail Image.png
Description
Peatlands are a type of wetlands where the rate of accumulation of organic matter exceed the rate of decomposition and have accumulated more than 30 cm of peat (Joosten and Clark, 2002). Peatlands store approximately 30% of all terrestrial carbon as recalcitrant peat, partially decomposed plant and microbial biomass, while

Peatlands are a type of wetlands where the rate of accumulation of organic matter exceed the rate of decomposition and have accumulated more than 30 cm of peat (Joosten and Clark, 2002). Peatlands store approximately 30% of all terrestrial carbon as recalcitrant peat, partially decomposed plant and microbial biomass, while simultaneously producing almost 40% of the globally emitted methane (Schmidt et al., 2016), making peatlands an important component of the carbon budgets. Published research indicates that the efficiency of carbon usage among microbial communities can determine the soil-carbon response to rising temperatures (Allison et al. 2010). By determining carbon consumption in peatland soils, total community respiration response, and community structure change with additions, models of carbon use efficiency in permafrost peatlands will be well-informed and have a better understanding of how the peatlands will respond to, and utilize, increased availability of carbon compounds due to the melting permafrost. To do this, we will sequence Lutose deep core samples to observe baseline microbial community structure at different depths and different age-gradients, construct substrate incubations of glucose and propionate and observe community respiration response via a gas chromatography flame ionization detector, track the glucose and propionate additions with high-performance liquid chromatography (HPLC), and sequence the samples once more to determine if there was a deviation from the initial community structure obtained prior to the incubations. We found that our initial sequencing data was supported by previous work (Lin et al., 2014), however we were unable to sequence samples post-incubation due to time constraints. In this sequencing analysis we found that the strongest variable that made samples biologically similar was the age-gradient site in which they were extracted. We found that the group with glucose additions produced the most carbon dioxide compared with the other treatments, but was not the treatment that dominated the production of methane. Finally, in the HPLC samples that were analyzed, we found that glucose is likely forming the most by-product accumulation from mass balance calculations, while propionate is likely forming the least. Future experimentation should focus on the shortcomings of this experiment. Further analysis of 16S rRNA sequencing data from after the incubations should be analyzed to determine the change in microbial community structure throughout the experiment. Furthermore, HPLC analysis for the several samples need to be done and followed up with mass balance to determine where the added glucose and propionate are being allocated within the soil. Once these pieces of the puzzle are put into place, our original question of how the microbial community structure changes at different depths and age-gradients within permafrost peatlands will be conclusively answered.
ContributorsFrese, Alexander Nicholas (Author) / Cadillo-Quiroz, Hinsby (Thesis director) / van Paassen, Leon (Committee member) / Sarno, Analissa (Committee member) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137211-Thumbnail Image.png
Description
Ephemeral and intermittent streams are valuable sources of surface water support in the arid ecosystems of the Southwestern United States. These streams account for over 80% of the streams in the American Southwest and their importance has been indicated in many studies. Ephemeral and intermittent streams support a wide range

Ephemeral and intermittent streams are valuable sources of surface water support in the arid ecosystems of the Southwestern United States. These streams account for over 80% of the streams in the American Southwest and their importance has been indicated in many studies. Ephemeral and intermittent streams support a wide range of plant and animal species in both continuous and episodic fashions. This study aimed to gain a better understanding of the relationship between streamflow permanence and patterns of biomass and secondary production of the riparian fauna these ecosystems support. This was accomplished through a yearlong survey in the Huachuca Mountains of Southeastern, Arizona where macroinvertebrates were collected at various sites along a gradient of streamflow permanence before, during, and after the three month monsoon season that supplies most of the annual rainfall in this region. The results of my surveys indicate that 1) Sites characterized by low streamflow permanence were more responsive to changes in precipitation than sites characterized by relatively high streamflow permanence 2) In ephemeral streams, there is a significant peak in terrestrial macroinvertebrate production and biomass both during and after the monsoon season 3) streamflow permanence may convey consistent but not exceptional secondary production whereas seasonality in rainfall may convey exceptional but episodic secondary production—more so in sites where streamflow is not consistent.
ContributorsMcCartin, Michael Patrick (Author) / Sabo, John (Thesis director) / Stromberg, Juliet (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137059-Thumbnail Image.png
Description
Fifty years ago, we embarked on a journey for the first time in all of history \u2014 an exploration of the final frontier: outer space. Now, having been to the moon and back, we are still exploring the unknown. In the 21st century, we have pioneered genetic cloning and made

Fifty years ago, we embarked on a journey for the first time in all of history \u2014 an exploration of the final frontier: outer space. Now, having been to the moon and back, we are still exploring the unknown. In the 21st century, we have pioneered genetic cloning and made other unprecedented biotechnological advances. Similarly, artists have ventured into their own frontier, branching out of their own narrowly defined areas and breaking down barriers \u2014 barriers between art and science, between the concert hall and the outdoors, between manmade instruments and the sounds of nature. At first glance, it seems that music and science have little in common. But upon closer inspection, one will discover that there are similarities and intersections between these two fields that deserve attention. Interest in the correlation between music and science can be traced back at least as far as Ancient Greece; since Pythagoras, mathematicians, physicists, acousticians and many others have addressed connections between the two fields in manifold ways. It is becoming increasingly obvious that art and science are not at the opposite ends of the spectrum, where conventional wisdom has traditionally located them, but at the opposite sides of the same coin. In my thesis, I seek to explore the connections between music and the sciences by examining the field of acoustic ecology. I will first provide an overview of music as an interdisciplinary field. Then I will undertake two case studies of musicians whose endeavors have been significant to the field of acoustic ecology, and consider the benefits that can be drawn from their work. These artists are David Dunn and Andrea Polli. I will draw on their philosophy, writings and art as well as on secondary literature. I will take a philosophical approach to the intersections between the two areas and identify heretofore little explored aspects of the interdisciplinary potential of these two fields.
ContributorsChou, Cecilia (Author) / Feisst, Sabine (Thesis director) / Hackbarth, Glenn (Committee member) / Barrett, The Honors College (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Music (Contributor)
Created2014-05
137132-Thumbnail Image.png
Description
It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying

It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying mechanisms are not well-known. Previous work has suggested that the crustacean zooplankter Daphnia reduces its feeding rates on phosphorus-rich food, causing low growth due to insufficient C (energy) intake. To test for this mechanism, feeding rates of Daphnia magna on algae (Scenedesmus acutus) differing in C:P ratio (P content) were determined. Overall, there was a significant difference among all treatments for feeding rate (p < 0.05) with generally higher feeding rates on P-rich algae. These data indicate that both high and low food C:P ratio do affect Daphnia feeding rate but are in contradiction with previous work that showed that P-rich food led to strong reductions in feeding rate. Additional experiments are needed to gain further insights.
ContributorsSchimpp, Sarah Ann (Author) / Elser, James (Thesis director) / Neuer, Susanne (Committee member) / Peace, Angela (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2014-05
133028-Thumbnail Image.png
Description
Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel

Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel out the resulting sensory feedback. Currently, there are no published accounts of the perception of tactile signals for motor tasks and contexts related to the lips during both speech planning and production. In this study, we measured the responsiveness of the somatosensory system during speech planning using light electrical stimulation below the lower lip by comparing perception during mixed speaking and silent reading conditions. Participants were asked to judge whether a constant near-threshold electrical stimulation (subject-specific intensity, 85% detected at rest) was present during different time points relative to an initial visual cue. In the speaking condition, participants overtly produced target words shown on a computer monitor. In the reading condition, participants read the same target words silently to themselves without any movement or sound. We found that detection of the stimulus was attenuated during speaking conditions while remaining at a constant level close to the perceptual threshold throughout the silent reading condition. Perceptual modulation was most intense during speech production and showed some attenuation just prior to speech production during the planning period of speech. This demonstrates that there is a significant decrease in the responsiveness of the somatosensory system during speech production as well as milliseconds before speech is even produced which has implications for speech disorders such as stuttering and schizophrenia with pronounced deficits in the somatosensory system.
ContributorsMcguffin, Brianna Jean (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134344-Thumbnail Image.png
Description
Bee communities form the keystone of many ecosystems through their pollination services. They are dynamic and often subject to significant changes due to several different factors such as climate, urban development, and other anthropogenic disturbances. As a result, the world has been experiencing a decline in bee diversity and abundance,

Bee communities form the keystone of many ecosystems through their pollination services. They are dynamic and often subject to significant changes due to several different factors such as climate, urban development, and other anthropogenic disturbances. As a result, the world has been experiencing a decline in bee diversity and abundance, which can have detrimental effects in the ecosystems they inhabit. One of the largest factors that impacts bees in today's world is the rapid urbanization of our planet, and it impacts the bee community in mixed ways. Not very much is understood about the bee communities that exist in urban habitats, but as urbanization is inevitably going to continue, knowledge on bee communities will need to strengthen. This study aims to determine the levels of variance in bee communities, considering multiple variables that bee communities can differ in. The following three questions are posed: do bee communities that are spatially separated differ significantly? Do bee communities that are separated by seasons differ significantly? Do bee communities that are separated temporally (by year, interannually) differ significantly? The procedure to conduct this experiment consists of netting and trapping bees at two sites at various times using the same methods. The data is then statistically analyzed for differences in abundance, richness, diversity, and species composition. After performing the various statistical analyses, it has been discovered that bee communities that are spatially separated, seasonally separated, or interannually separated do not differ significantly when it comes to abundance and richness. Spatially separated bee communities and interannually separated bee communities show a moderate level of dissimilarity in their species composition, while seasonally separated bee communities show a greater level of dissimilarity in species composition. Finally, seasonally separated bee communities demonstrate the greatest disparity of bee diversity, while interannually separated bee communities show the least disparity of bee diversity. This study was conducted over the time span of two years, and while the levels of variance of an urban area between these variables were determined, further variance studies of greater length or larger areas should be conducted to increase the currently limited knowledge of bee communities in urban areas. Additional studies on precipitation amounts and their effects on bee communities should be conducted, and studies from other regions should be taken into consideration while attempting to understand what is likely the most environmentally significant group of insects.
ContributorsPhan, James Thien (Author) / Sweat, Ken (Thesis director) / Foltz-Sweat, Jennifer (Committee member) / School of Music (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134804-Thumbnail Image.png
Description
Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.
ContributorsOssanna, Meilin Ryan (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12