Matching Items (8)
Filtering by

Clear all filters

154914-Thumbnail Image.png
Description
There is considerable recent interest in the dynamic nature of immune function in the context of an animal’s internal and external environment. An important focus within this field of ecoimmunology is on how availability of resources such as energy can alter immune function. Water is an additional resource that drives

There is considerable recent interest in the dynamic nature of immune function in the context of an animal’s internal and external environment. An important focus within this field of ecoimmunology is on how availability of resources such as energy can alter immune function. Water is an additional resource that drives animal development, physiology, and behavior, yet the influence hydration has on immunity has received limited attention. In particular, hydration state may have the greatest potential to drive fluctuations in immunity and other physiological functions in species that live in water-limited environments where they may experience periods of dehydration. To shed light on the sensitivity of immune function to hydration state, I first tested the effect of hydration states (hydrated, dehydrated, and rehydrated) and digestive states on innate immunity in the Gila monster, a desert-dwelling lizard. Though dehydration is often thought to be stressful and, if experienced chronically, likely to decrease immune function, dehydration elicited an increase in immune response in this species, while digestive state had no effect. Next, I tested whether dehydration was indeed stressful, and tested a broader range of immune measures. My findings validated the enhanced innate immunity across additional measures and revealed that Gila monsters lacked a significant stress hormone response during dehydration (though results were suggestive). I next sought to test if life history (in terms of environmental stability) drives these differences in dehydration responses using a comparative approach. I compared four confamilial pairs of squamate species that varied in habitat type within each pair—four species that are adapted to xeric environments and four that are adapted to more mesic environments. No effect of life history was detected between groups, but hydration was a driver of some measures of innate immunity and of stress hormone concentrations in multiple species. Additionally, species that exhibited a stress response to dehydration did not have decreased innate immunity, suggesting these physiological responses may often be decoupled. My dissertation work provides new insight into the relationship between hydration, stress, and immunity, and it may inform future work exploring disease transmission or organismal responses to climate change.
ContributorsMoeller, Karla T (Author) / DeNardo, Dale (Thesis advisor) / Angilletta, Michael (Committee member) / French, Susannah (Committee member) / Rutowski, Ronald (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2016
155697-Thumbnail Image.png
Description
Many animals thermoregulate to maximize performance. However, interactions with other animals, such as competitors or predators, limit access to preferred microclimates. For instance, an animal may thermoregulate poorly when fighting rivals or avoiding predators. However, the distribution of thermal resources should influence how animals perceive and respond to risk. When

Many animals thermoregulate to maximize performance. However, interactions with other animals, such as competitors or predators, limit access to preferred microclimates. For instance, an animal may thermoregulate poorly when fighting rivals or avoiding predators. However, the distribution of thermal resources should influence how animals perceive and respond to risk. When thermal resources are concentrated in space, individuals compete for access, which presumably reduces the thermoregulatory performance while making their location more predictable to predators. Conversely, when thermal resources are dispersed, several individuals can thermoregulate effectively without occupying the same area. Nevertheless, interactions with competitors or predators impose a potent stress, often resulting in both behavioral and physiological changes that influence thermoregulation. To assess the costs of intraspecific competition and predation risk during thermoregulation, I measured thermoregulation, movement, and hormones of male lizards (Sceloporus jarrovi) in experiment landscapes, with clumped to patchy distributions of microclimates. I found lizards aggressively competed for access to microclimates, with larger males gaining priority access when thermal resources were aggregated. Competition reduced thermoregulatory performance, increased movements, and elevated plasma corticosterone in large and small males. However, the magnitude of these responses decreased as the patchiness of the thermal environment increased. Similarly, under simulated predation risk, lizards reduced thermoregulatory performance, decreased movements, and elevated plasma corticosterone. Again, with the magnitude of these responses decreased with increasing thermal patchiness. Interestingly, even without competitors or predators, lizards in clumped arenas moved greater distances and circulated more corticosterone than did lizards in patchy arenas, indicating the thermal quality of the thermal landscape affected the energetic demands on lizards. Thus, biologists should consider species interactions and spatial structure when modeling impacts of climate change on thermoregulation.
ContributorsRusch, Travis W (Author) / Angilletta, Michael (Thesis advisor) / Sears, Mike (Committee member) / DeNardo, Dale (Committee member) / Deviche, Pierre (Committee member) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2017
155626-Thumbnail Image.png
Description
Desert environments provide considerable challenges to organisms because of high temperatures and limited food and water resources. Accordingly, desert species have behavioral and physiological traits that enable them to cope with these constraints. However, continuing human activity as well as anticipated further changes to the climate and the

Desert environments provide considerable challenges to organisms because of high temperatures and limited food and water resources. Accordingly, desert species have behavioral and physiological traits that enable them to cope with these constraints. However, continuing human activity as well as anticipated further changes to the climate and the vegetative community pose a great challenge to such balance between an organism and its environment. This is especially true in the Arabian Desert, where climate conditions are extreme and environmental disturbances substantial. This study combined laboratory and field components to enhance our understanding of dhub (Uromastyx aegyptius) ecophysiology and determine whether habitat protection influences dhub behavior and physiology.

Results of this study showed that while body mass and body condition consistently diminished as the active season progressed, they were both greater in protected habitats compared to non-protected habitats, regardless of season. Dhubs surface activity and total body water decreased while evaporative water loss and body temperature increased as the active season progressed and ambient temperature got hotter. Total body water was also significantly affected by habitat protection.

Overall, this study revealed that, while habitat protection provided more vegetation, it had little effect on seasonal changes in surface activity. While resource availability in protected areas might allow for larger dhub populations, unprotected areas showed similar body morphometrics, activity, and body temperatures. By developing an understanding of how different coping strategies are linked to particular ecological, morphological, and phylogenetic traits, we will be able to make more accurate predictions regarding the vulnerability of species. By combining previous studies pertaining to conservation of protected species with the results of my study, a number of steps in ecosystem management are recommended to help in the preservation of dhubs in the Kuwaiti desert.
ContributorsAl-Sayegh, Mohammed (Author) / DeNardo, Dale (Thesis advisor) / Angilletta, Michael (Committee member) / Smith, Andrew (Committee member) / Sabo, John (Committee member) / Majeed, Qais (Committee member) / Arizona State University (Publisher)
Created2017
161690-Thumbnail Image.png
Description
Despite theoretical models predicting that signals should only evolve if they convey honest information, dishonest signals may persist. Interestingly, crustaceans have been crucial in furthering biologists understanding of how and why dishonest signals persist; because many crustaceans wield claws that function as dishonest signals. For example, male fiddler crabs have

Despite theoretical models predicting that signals should only evolve if they convey honest information, dishonest signals may persist. Interestingly, crustaceans have been crucial in furthering biologists understanding of how and why dishonest signals persist; because many crustaceans wield claws that function as dishonest signals. For example, male fiddler crabs have claws that grow to large sizes but are incapable of inflicting severe damage to opponents, thus acting as a dishonest signal of their strength. Although initial work suggested that dishonest signaling was common throughout Crustacea, biologists understanding of the generality of dishonest communication is lacking. To resolve these issues, I combined morphological, behavioral, and comparative studies to investigate whether crayfish engage in dishonest communication. First, I found that regenerated claws in virile crayfish (Faxonius virilis) produce 40% weaker pinching forces compared to original claws. These results suggest that claw regeneration in crayfish may be the functional mechanism that produces dishonest signals. Second, I conducted two studies that investigated what traits determine dominance in staged contests; one on intrasexual contests in both male and female F. virilis, and a second between intra- and interspecific contests between male F. virilis and male red swamp crayfish (Procambarus clarkii). In both studies, I did not find support the hypothesis that large but weak claws function as dishonest signals; because claw size did not predict the outcome of signaling interactions and claw strength did not predict the outcome of physical fights. Lastly, I conducted a comparative study between six species of crayfish — three stream-dwelling species that use their claws as weapons and signals, and three burrowing species that use their claws for excavating burrows. Despite all six species possessing claws that unreliably predicted claw strength, I found no support for the hypothesis that their claws function as dishonest signals in any of these species. Thus, my dissertation results suggest that despite having claws that unreliably predict their strength, such unreliable signals do not equate to dishonest signals. Altogether, my work highlights the importance of collecting behavioral data in studies of dishonest communication and stresses the importance of separating unreliable signals from dishonest signals.
ContributorsGraham, Zackary (Author) / Angilletta, Michael (Thesis advisor) / Martins, Emilia (Committee member) / McGraw, Kevin (Committee member) / Pratt, Stephen (Committee member) / Wilson, Robbie (Committee member) / Arizona State University (Publisher)
Created2021
131787-Thumbnail Image.png
Description
I am evaluating the genomic basis of a model of heat tolerance in which organisms succumb to warming when their demand for oxygen exceeds their supply. This model predicts that tolerance of hypoxia should correlate genetically with tolerance of heat. To evaluate this prediction, I tested heat and hypoxia tolerance

I am evaluating the genomic basis of a model of heat tolerance in which organisms succumb to warming when their demand for oxygen exceeds their supply. This model predicts that tolerance of hypoxia should correlate genetically with tolerance of heat. To evaluate this prediction, I tested heat and hypoxia tolerance in several genetic lines of Drosophila melanogaster. I hypothesized that genotypes that can fly better at high temperatures are also able to fly well at hypoxia. Genotypes from the Drosophila Genetic Reference Panel (DGRP) were assessed for flight at hypoxia and normal temperature (12% O2 and 25°C) as well as normoxia and high temperature (21% O2 and 39°C). After testing 66 lines from the DGRP, the oxygen- and capacity-limited thermal tolerance theory is supported; hypoxia-resistant lines are more likely to be heat-resistant. This supports previous research, which suggested an interaction between the tolerance of the two environmental variables. I used this data to perform a genome-wide association study to find specific single-nucleotide polymorphisms associated with heat tolerance and hypoxia tolerance but found no specific genomic markers. Understanding factors that limit an organism’s stress tolerance as well as the regions of the genome that dictate this phenotype should enable us to predict how organisms may respond to the growing threat of climate change.
ContributorsFredette-Roman, Jacob Daniel (Author) / Angilletta, Michael (Thesis director) / VandenBrooks, John (Committee member) / Youngblood, Jacob (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131551-Thumbnail Image.png
Description
The non-native mosquito Aedes aegypti has become a common nuisance in Maricopa county. Associated with human settlement, Ae. aegypti is known to reproduce in standing water sources both indoors and outdoors, within vessels such as tires, flowerpots, and neglected swimming pools (Jansen & Beebe, 2010). Ae. aegypti and the related

The non-native mosquito Aedes aegypti has become a common nuisance in Maricopa county. Associated with human settlement, Ae. aegypti is known to reproduce in standing water sources both indoors and outdoors, within vessels such as tires, flowerpots, and neglected swimming pools (Jansen & Beebe, 2010). Ae. aegypti and the related Ae. albopictus are the primary vectors of the arboviral diseases chikungunya, Zika, yellow fever and dengue. Ae. aegypti tends to blood feed multiple times per gonotrophic cycle (cycle of feeding and egg laying) which, alongside a preference for human blood and close association with human habitation, contributes to an increased risk of Ae. aegypti borne virus transmission (Scott & Takken, 2012). Between 2010-2017, 153 travel-associated cases of dengue were reported in the whole of Arizona (Rivera et al., 2020); while there have been no documented locally transmitted cases of Aedes borne diseases in Maricopa county, there are no apparent reasons why local transmission can’t occur in the future via local Aedes aegypti mosquitoes infected after feeding from travelling viremic hosts. Incidents of local dengue transmission in New York (Rivera et al., 2020) and Barcelona (European Center for Disease Control [ECDC], 2019) suggest that outbreaks of Aedes borne arbovirus’ can occur in regions more temperate than the current endemic range of Aedes borne diseases. Further, while the fact that Ae. aegypti eggs have a high mortality rate when exposed to cold temperatures limits the ability for Ae aegypti to establish stable breeding populations in temperate climates (Thomas, Obermayr, Fischer, Kreyling, & Beierkuhnlein, 2012), global increases in temperature will expand the possible ranges of Ae aegypti and Aedes borne diseases.
ContributorsHon, Ruiheng (Author) / Paaijmans, Krijn (Thesis director) / Bond, Angela (Committee member) / Angilletta, Michael (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
168609-Thumbnail Image.png
Description
By increasing the mean and variance of environmental temperatures, climate change has caused local extinctions and range shifts of numerous species. However, biologists disagree on which populations and species are most vulnerable to future warming. This debate arises because biologists do not know which physiological processes are most vulnerable to

By increasing the mean and variance of environmental temperatures, climate change has caused local extinctions and range shifts of numerous species. However, biologists disagree on which populations and species are most vulnerable to future warming. This debate arises because biologists do not know which physiological processes are most vulnerable to temperature or how to model these processes in complex environments. Using the South American locust (Schistocerca cancellata) as a model system, my dissertation addressed this debate and explained how climate limits the persistence of locust populations. Locusts of S. cancellata are serious agricultural pests with occasional outbreaks covering up to 4 million km2 over six countries. Because outbreaks are largely driven by climate, understanding how climate limits the persistence of locusts may help predict crop losses in future climates. To achieve this aim, I integrated observational, experimental, and computational approaches. First, I tested a physiological model of heat stress. By measuring the heat tolerance of locusts under different oxygen concentrations, I demonstrated that heat tolerance depends on oxygen supply during the hatchling stage only. Second, I modeled the geographic distribution of locusts using physiological traits. I started by measuring thermal effects on consumption and defecation of field-captured locusts, and I then used these data to model energy gain in current and future climates. My results indicated that incorporating physiological mechanisms can improve the accuracy of models and alter predicted impacts of climate change. Finally, I explored the causes and consequences of intraspecific variation in heat tolerance. After measuring heat tolerance of locusts in different hydration states and developmental stages, I modeled survival in historical microclimates. My models indicated that recent climate change has amplified the risk of overheating for locusts, and this risk depended strongly on shade availability, hydration state, and developmental stage. Therefore, the survival of locusts in future climates will likely depend on their access to shade and water. Overall, my dissertation argues that modeling physiological mechanisms can improve the ability of biologists to predict the impacts of climate change.
ContributorsYoungblood, Jacob (Author) / Angilletta, Michael (Thesis advisor) / Buckley, Lauren (Committee member) / Cease, Arianne (Committee member) / Smith, Brian (Committee member) / Vanden Brooks, John (Committee member) / Arizona State University (Publisher)
Created2022
190800-Thumbnail Image.png
Description
Ectotherms rely on external heat to attain target body temperatures which can vary based on the animal’s current physiological activity. Many ectotherms become thermophilic (“heat-loving”) during crucial physiological processes like digestion and reproduction, behaviorally thermoregulating to increase body temperature higher than what they otherwise prefer. However, there is a positive

Ectotherms rely on external heat to attain target body temperatures which can vary based on the animal’s current physiological activity. Many ectotherms become thermophilic (“heat-loving”) during crucial physiological processes like digestion and reproduction, behaviorally thermoregulating to increase body temperature higher than what they otherwise prefer. However, there is a positive relationship between body temperature and water loss that dictates increasing body temperature typically elicits an increase in water loss. Animals that inhabit areas where water is at least seasonally limited (e.g., deserts, wet-dry forests) may face a tradeoff between prioritizing behavioral thermophily to optimize physiological processes versus prioritizing water balance and potentially sacrificing some aspect of total performance capability.It is thus far unknown how reduced water availability and subsequent dehydration may influence thermophily in ectotherms. I hypothesized that behaviorally thermoregulating ectotherms exhibit thermophily during critical physiological events, and the extent to which thermophily is expressed is influenced by the animal’s hydric state. Using Children’s pythons (Antaresia childreni), I investigated the effects of dehydration on behavioral thermophily during digestion and reproduction. I found that dehydration caused a suppression in digestion-associated thermophily, where dehydrated snakes returned to pre-feeding body temperature sooner than they did when they were hydrated. In contrast, water deprivation at different reproductive stages had no effect on thermophily despite leading to a significant increase in the female’s plasma osmolality. ii Additionally, the timing of water deprivation during reproduction had differing effects on plasma osmolality and circulating triglyceride, total protein, and corticosterone concentrations. My research provides evidence of the sensitive and complex dynamic between body temperature, water balance, and physiological processes. At a time when many dry ecosystems are becoming hotter and drier, my investigation of dehydration and its influence on thermal dynamics and physiological metrics provides insight into cryptic effects on the vital processes of digestion and reproduction.
ContributorsAzzolini, Jill L. (Author) / Denardo, Dale F. (Thesis advisor) / John-Alder, Henry (Committee member) / Angilletta, Michael (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2023