Matching Items (5)
Filtering by

Clear all filters

132201-Thumbnail Image.png
Description
Nitrogen (N) and phosphorus (P) are important limiting or co-limiting nutrients in many aquatic ecosystems. Consumers such as fishes can significantly impact the balance and redistribution of these nutrients through consumer-driven nutrient recycling. Intraspecific variation in nutrient excretion rates can therefore have significant ecosystem impacts. Among individuals of sexually dimorphic

Nitrogen (N) and phosphorus (P) are important limiting or co-limiting nutrients in many aquatic ecosystems. Consumers such as fishes can significantly impact the balance and redistribution of these nutrients through consumer-driven nutrient recycling. Intraspecific variation in nutrient excretion rates can therefore have significant ecosystem impacts. Among individuals of sexually dimorphic consumers, variation in population size structure and sex ratio could potentially have impacts of similar magnitude. We tested for the effects of body size and sex on consumer-driven nutrient recycling by measuring N and P excretion rates from eight species of poeciliid fishes. We found a strong positive effect of size on N excretion rates, as has been previously described among species. However, we found no effect of size on P excretion rates, nor did we find any difference in N or P excretion rates between sexes. Our work provides a preliminary analysis of how sexual dimorphism can lead to disparate nutrient excretion rates within consumer populations. These results indicate that variation in population sex ratios of sexually dimorphic consumers could have impacts at the ecosystem scale.
ContributorsAmbus, Nicholas George (Author) / Jon, Harrison (Thesis director) / Eric, Moody (Committee member) / Jordan, Okie (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131787-Thumbnail Image.png
Description
I am evaluating the genomic basis of a model of heat tolerance in which organisms succumb to warming when their demand for oxygen exceeds their supply. This model predicts that tolerance of hypoxia should correlate genetically with tolerance of heat. To evaluate this prediction, I tested heat and hypoxia tolerance

I am evaluating the genomic basis of a model of heat tolerance in which organisms succumb to warming when their demand for oxygen exceeds their supply. This model predicts that tolerance of hypoxia should correlate genetically with tolerance of heat. To evaluate this prediction, I tested heat and hypoxia tolerance in several genetic lines of Drosophila melanogaster. I hypothesized that genotypes that can fly better at high temperatures are also able to fly well at hypoxia. Genotypes from the Drosophila Genetic Reference Panel (DGRP) were assessed for flight at hypoxia and normal temperature (12% O2 and 25°C) as well as normoxia and high temperature (21% O2 and 39°C). After testing 66 lines from the DGRP, the oxygen- and capacity-limited thermal tolerance theory is supported; hypoxia-resistant lines are more likely to be heat-resistant. This supports previous research, which suggested an interaction between the tolerance of the two environmental variables. I used this data to perform a genome-wide association study to find specific single-nucleotide polymorphisms associated with heat tolerance and hypoxia tolerance but found no specific genomic markers. Understanding factors that limit an organism’s stress tolerance as well as the regions of the genome that dictate this phenotype should enable us to predict how organisms may respond to the growing threat of climate change.
ContributorsFredette-Roman, Jacob Daniel (Author) / Angilletta, Michael (Thesis director) / VandenBrooks, John (Committee member) / Youngblood, Jacob (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131551-Thumbnail Image.png
Description
The non-native mosquito Aedes aegypti has become a common nuisance in Maricopa county. Associated with human settlement, Ae. aegypti is known to reproduce in standing water sources both indoors and outdoors, within vessels such as tires, flowerpots, and neglected swimming pools (Jansen & Beebe, 2010). Ae. aegypti and the related

The non-native mosquito Aedes aegypti has become a common nuisance in Maricopa county. Associated with human settlement, Ae. aegypti is known to reproduce in standing water sources both indoors and outdoors, within vessels such as tires, flowerpots, and neglected swimming pools (Jansen & Beebe, 2010). Ae. aegypti and the related Ae. albopictus are the primary vectors of the arboviral diseases chikungunya, Zika, yellow fever and dengue. Ae. aegypti tends to blood feed multiple times per gonotrophic cycle (cycle of feeding and egg laying) which, alongside a preference for human blood and close association with human habitation, contributes to an increased risk of Ae. aegypti borne virus transmission (Scott & Takken, 2012). Between 2010-2017, 153 travel-associated cases of dengue were reported in the whole of Arizona (Rivera et al., 2020); while there have been no documented locally transmitted cases of Aedes borne diseases in Maricopa county, there are no apparent reasons why local transmission can’t occur in the future via local Aedes aegypti mosquitoes infected after feeding from travelling viremic hosts. Incidents of local dengue transmission in New York (Rivera et al., 2020) and Barcelona (European Center for Disease Control [ECDC], 2019) suggest that outbreaks of Aedes borne arbovirus’ can occur in regions more temperate than the current endemic range of Aedes borne diseases. Further, while the fact that Ae. aegypti eggs have a high mortality rate when exposed to cold temperatures limits the ability for Ae aegypti to establish stable breeding populations in temperate climates (Thomas, Obermayr, Fischer, Kreyling, & Beierkuhnlein, 2012), global increases in temperature will expand the possible ranges of Ae aegypti and Aedes borne diseases.
ContributorsHon, Ruiheng (Author) / Paaijmans, Krijn (Thesis director) / Bond, Angela (Committee member) / Angilletta, Michael (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132749-Thumbnail Image.png
Description

This study examined crayfish diet within varying hydrologic environment in lotic systems using stable isotope analysis of crayfish and basal resources to add depth to previous findings. Crayfish are numerous and are omnivorous, opportunistic feeders, feeding on invertebrates, vegetation and detritus. Arizona streams stand apart from the Eastern and Northwestern

This study examined crayfish diet within varying hydrologic environment in lotic systems using stable isotope analysis of crayfish and basal resources to add depth to previous findings. Crayfish are numerous and are omnivorous, opportunistic feeders, feeding on invertebrates, vegetation and detritus. Arizona streams stand apart from the Eastern and Northwestern aquatic ecosystems of the United States because Arizona has no native crayfish species. Two species have been introduced and become widely established in Arizona (Orconectes virilis and Procambarus clarkii), with concern for further introduction of crayfish species and more information on how these two species impact the native species in the streams is needed. Previous studies have focused on crayfish abundance with hydrologic variation and crayfish diets within a lentic system, but few have focused on how the diet of consumers varies with hydrologic variability. Crayfish are hardy and have a dramatically increasing population within Arizona and therefore inhabit systems with a wide range of hydrologic variability which may contribute to spatial variability. The results show that crayfish diets do show a significant level of seasonal variation in some study locations, in both C source and trophic level. Hydrologic variation was also shown to impact crayfish diet at several study sites, with increasing magnitude of event (both floods and droughts) correlating with a change toward more aquatic C sources and lower trophic position in several of the study sites. In some locations, the correlation was not as strong with variation and diet change and showed less change in C source and rather showed an increase in trophic position.

ContributorsThompson, Sara Nicole (Author) / Sabo, John L. (Thesis director) / Grimm, Nancy (Committee member) / Baruch, Ethan M. (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132536-Thumbnail Image.png
Description
Human activity produces ambient noise that potentially alters species’ abilities to communicate with each other—among other impacts. Given that birds are known to be sensitive to structural changes in habitat and highly communicative through sound, it is beneficial to understand how changing acoustic ecologies and ambient noise impact birds’

Human activity produces ambient noise that potentially alters species’ abilities to communicate with each other—among other impacts. Given that birds are known to be sensitive to structural changes in habitat and highly communicative through sound, it is beneficial to understand how changing acoustic ecologies and ambient noise impact birds’ ability to communicate in their respective environments. In this study, mockingbird calls from an urban, desert, and intermediate study site were recorded and analyzed for differences in acoustic properties. Acoustic properties such as frequency and amplitude differed significantly across sites as it was determined that mockingbirds in urban areas increase both the peak frequency and amplitude of their calls in order to communicate. This study identifies what these changes in acoustic properties mean in relation to the survival and conservation of birds and concludes with recommendations for novel research.
ContributorsReynolds, Bailey Susana (Author) / Pearson, David (Thesis director) / Walters, Molina (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05