Matching Items (5)
Filtering by

Clear all filters

153151-Thumbnail Image.png
Description
Microalgae represent a potential sustainable alternative for the enhancement and protection of agricultural crops. The dry biomass and cellular extracts of Scenedesmus dimorphus were applied as a biofertilizer, a foliar spray, and a seed primer to evaluate seed germination, plant growth, and crop yield of Roma tomato plants. The dry

Microalgae represent a potential sustainable alternative for the enhancement and protection of agricultural crops. The dry biomass and cellular extracts of Scenedesmus dimorphus were applied as a biofertilizer, a foliar spray, and a seed primer to evaluate seed germination, plant growth, and crop yield of Roma tomato plants. The dry biomass was applied as a biofertilizer at 50 g and 100 g per plant, to evaluate its effects on plant development and crop yield. Biofertilizer treatments enhanced plant growth and led to greater crop (fruit) production. Timing of biofertilizer application proved to be of importance - earlier 50 g biofertilizer application resulted in greater plant growth. Scenedesmus dimorphus culture, growth medium, and different concentrations (1%, 5%, 10%, 25%, 50%, 75%, 100%) of aqueous cell extracts were used as seed primers to determine effects on germination. Seeds treated with Scenedesmus dimorphus culture and with extract concentrations higher than 50 % (0.75 g ml-1) triggered faster germination - 2 days earlier than the control group. Extract foliar sprays of 50 ml and 100 ml, were obtained and applied to tomato plants at various extract concentrations (10%, 25%, 50%, 75% and 100%). Plant height, flower development and number of branches were significantly enhanced with 50 % (7.5 g ml-1) extracts. Higher concentration sprays led to a decrease in growth. The extracts were further screened to assess potential antimicrobial activity against the bacterium Escherichia coli ATCC 25922, the fungi Candida albicans ATCC 90028 and Aspergillus brasiliensis ATCC 16404. No antimicrobial activity was observed from the microalga extracts on the selected microorganisms.
ContributorsGarcia-Gonzalez, Jesus (Author) / Sommerfeld, Milton (Thesis advisor) / Steele, Kelly (Committee member) / Henderson, Mark (Committee member) / Arizona State University (Publisher)
Created2014
151172-Thumbnail Image.png
Description
For the past 30 years wildlife biologists have debated the need of pronghorn antelope (Antilocapra americana) to drink freestanding water (free water). Some have suggested that pronghorn may feed at night to increase preformed water (plant moisture) intake, thus decreasing their dependence on free water. Pronghorn diet composition and nutrient

For the past 30 years wildlife biologists have debated the need of pronghorn antelope (Antilocapra americana) to drink freestanding water (free water). Some have suggested that pronghorn may feed at night to increase preformed water (plant moisture) intake, thus decreasing their dependence on free water. Pronghorn diet composition and nutrient intake is integral to understanding water available to pronghorn through preformed and metabolic sources. The dual purpose of this study was to determine plant composition of pronghorn diets, and to examine whether night feeding provides a water allocation advantage by testing for differences between day and night and modeling free water requirements during biologically critical seasons and years of different precipitation. I determined species composition, selected nutrients, and moisture content of American pronghorn diets on Perry Mesa, Arizona in March, May, June and August of 2008 and 2009. I used microhistological analysis of fecal samples to determine percent plant composition of pronghorn diets. I used forage samples to evaluate the nutrient composition of those diets for moisture, crude protein and structural carbohydrates, and to calculate metabolic water. I used calculations proposed by Fox et al. (2000) to model free water requirements and modified the equations to reflect increased requirements for lactation. Diet analysis revealed that pronghorn used between 67% and 99% forbs and suggested fair range conditions. Preformed water was not significantly different between night and day. Night feeding appeared to be of marginal advantage, providing an average potential 9% preformed water increase in 2008, and 3% in 2009. The model indicated that neither male nor female pronghorn could meet their water requirements from preformed and metabolic water during any time period, season or year. The average free water requirements for females ranged from 0.67 L/animal/day (SE 0.06) in March, 2008 to 3.12 L/animal/day (SE 0.02) in June, 2009. The model showed that American pronghorn on Perry Mesa require access to free water during biological stress periods.
ContributorsTluczek, Melanie (Author) / Miller, William H. (Thesis advisor) / Brown, David E. (Committee member) / Steele, Kelly (Committee member) / Arizona State University (Publisher)
Created2012
136192-Thumbnail Image.png
Description
Is it possible to treat the mouth as a natural environment, and determine new methods to keep the microbiome in check? The need for biodiversity in health may suggest that every species carries out a specific function that is required to maintain equilibrium and homeostasis within the oral cavity. Furthermore,

Is it possible to treat the mouth as a natural environment, and determine new methods to keep the microbiome in check? The need for biodiversity in health may suggest that every species carries out a specific function that is required to maintain equilibrium and homeostasis within the oral cavity. Furthermore, the relationship between the microbiome and its host is mutually beneficial because the host is providing microbes with an environment in which they can flourish and, in turn, keep their host healthy. Reviewing examples of larger scale environmental shifts could provide a window by which scientists can make hypotheses. Certain medications and healthcare treatments have been proven to cause xerostomia. This disorder is characterized by a dry mouth, and known to be associated with a change in the composition, and reduction, of saliva. Two case studies performed by Bardow et al, and Leal et al, tested and studied the relationships of certain medications and confirmed their side effects on the salivary glands [2,3]. Their results confirmed a relationship between specific medicines, and the correlating complaints of xerostomia. In addition, Vissink et al conducted case studies that helped to further identify how radiotherapy causes hyposalivation of the salivary glands [4]. Specifically patients that have been diagnosed with oral cancer, and are treated by radiotherapy, have been diagnosed with xerostomia. As stated prior, studies have shown that patients having an ecologically balanced and diverse microbiome tend to have healthier mouths. The oral cavity is like any biome, consisting of commensalism within itself and mutualism with its host. Due to the decreased salivary output, caused by xerostomia, increased parasitic bacteria build up within the oral cavity thus causing dental disease. Every human body contains a personalized microbiome that is essential to maintaining health but capable of eliciting disease. The Human Oral Microbiomics Database (HOMD) is a set of reference 16S rRNA gene sequences. These are then used to define individual human oral taxa. By conducting metagenomic experiments at the molecular and cellular level, scientists can identify and label micro species that inhabit the mouth during parasitic outbreaks or a shifting of the microbiome. Because the HOMD is incomplete, so is our ability to cure, or prevent, oral disease. The purpose of the thesis is to research what is known about xerostomia and its effects on the complex microbiome of the oral cavity. It is important that researchers determine whether this particular perspective is worth considering. In addition, the goal is to create novel experiments for treatment and prevention of dental diseases.
ContributorsHalcomb, Michael Jordan (Author) / Chen, Qiang (Thesis director) / Steele, Kelly (Committee member) / Barrett, The Honors College (Contributor) / College of Letters and Sciences (Contributor)
Created2015-05
134276-Thumbnail Image.png
Description
Abstract
Purpose—Use a framework of genetic knowledge to investigate the association between the genotypes of various genes with phenotypes, specifically the traits of elite athletes, in order to establish a personal opinion on their relevance to athletic performance.
Methods—Assemble and analyze selected published scientific studies on genotype and athletic performance

Abstract
Purpose—Use a framework of genetic knowledge to investigate the association between the genotypes of various genes with phenotypes, specifically the traits of elite athletes, in order to establish a personal opinion on their relevance to athletic performance.
Methods—Assemble and analyze selected published scientific studies on genotype and athletic performance and lastly to formulate a personal opinion on the value of genetic testing of athletes. ACTN3, ACE, MSTN, and apoE were the genes selected for analyses.
Results—Two genes, ACTN3 and ACE, showed a significant relationship of genotype to phenotypic traits related to athletic performance. ApoE did not demonstrate a phenotypic association with athletic performance, however it showed a correlation with injury susceptibility leading to traumatic brain injury (TBI). MSTN did not show a phenotypic association with athletic performance.
Conclusion—When considering the multifactorial nature of athletics, each sport must be investigated individually due to the different individual requirements. ACTN3 and ACE are the most widely studied genes, therefore, considerable data on their relevance to athletic performance was easily obtained and supported a relationship between genotype and athletic performance.
ContributorsMinto, Jordan Taylor- Lloyd (Author) / Steele, Kelly (Thesis director) / Penton, C. Ryan (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
187727-Thumbnail Image.png
Description
Genome-wide, single nucleotide polymorphisms (SNPs) and germination data were analyzed to better understand species delimitation and salt-tolerance within the legume genus Medicago. Molecular phylogenies revealed that the widely-used, genomic model line R108 and two deeply divergent accessions of Medicago truncatula are in fact more closely related to Medicago littoralis than

Genome-wide, single nucleotide polymorphisms (SNPs) and germination data were analyzed to better understand species delimitation and salt-tolerance within the legume genus Medicago. Molecular phylogenies revealed that the widely-used, genomic model line R108 and two deeply divergent accessions of Medicago truncatula are in fact more closely related to Medicago littoralis than to other accessions representing Medicago truncatula. This result was supported by germination data wherein the two accessions representing deeply divergent Medicago truncatula demonstrated salt-tolerance that was more similar to Medicago littoralis than to other accessions of Medicago truncatula. Molecular phylogenies revealed that two additional accessions representing deeply divergent Medicago truncatula appear to be more closely related to Medicago italica than to other accessions representing Medicago truncatula. The results of the present study elucidate complex evolutionary relationships and contribute to the present understanding of existing salt-tolerance within Medicago.
ContributorsHopkins, Andrew David (Author) / Wojciechowski, Martin (Thesis advisor) / Park, Yujin (Committee member) / Steele, Kelly (Committee member) / Arizona State University (Publisher)
Created2023