Matching Items (6)
Filtering by

Clear all filters

151042-Thumbnail Image.png
Description
Climate and land use change are projected to threaten biodiversity over the coming century. However, the combined effects of these threats on biodiversity and the capacity of current conservation networks to protect species' habitat are not well understood. The goals of this study were to evaluate the effect of climate

Climate and land use change are projected to threaten biodiversity over the coming century. However, the combined effects of these threats on biodiversity and the capacity of current conservation networks to protect species' habitat are not well understood. The goals of this study were to evaluate the effect of climate change and urban development on vegetation distribution in a Mediterranean-type ecosystem; to identify the primary source of uncertainty in suitable habitat predictions; and to evaluate how well conservation areas protect future habitat in the Southwest ecoregion of the California Floristic Province. I used a consensus-based modeling approach combining three different species distribution models to predict current and future suitable habitat for 19 plant species representing different plant functional types (PFT) defined by fire-response (obligate seeders, resprouting shrubs), and life forms (herbs, subshurbs). I also examined the response of species grouped by range sizes (large, small). I used two climate models, two emission scenarios, two thresholds, and high-resolution (90m resolution) environmental data to create a range of potential scenarios. I evaluated the effectiveness of an existing conservation network to protect suitable habitat for rare species in light of climate and land use change. The results indicate that the area of suitable habitat for each species varied depending on the climate model, emission scenario, and threshold combination. The suitable habitat for up to four species could disappear from the ecoregion, while suitable habitat for up to 15 other species could decrease under climate change conditions. The centroid of the species' suitable environmental conditions could shift up to 440 km. Large net gains in suitable habitat were predicted for a few species. The suitable habitat area for herbs has a small response to climate change, while obligate seeders could be the most affected PFT. The results indicate that the other two PFTs gain a considerable amount of suitable habitat area. Several rare species could lose suitable habitat area inside designated conservation areas while gaining suitable habitat area outside. Climate change is predicted to be more important than urban development as a driver of habitat loss for vegetation in this region in the coming century. These results indicate that regional analyses of this type are useful and necessary to understand the dynamics of drivers of change at the regional scale and to inform decision making at this scale.
ContributorsBeltrán Villarreal, Bray de Jesús (Author) / Franklin, Janet (Thesis advisor) / Fenichel, Eli P (Committee member) / Kinzig, Ann P (Committee member) / Collins, James P. (Committee member) / Arizona State University (Publisher)
Created2012
150280-Thumbnail Image.png
Description
Climate change has the potential to affect vegetation via changes in temperature and precipitation. In the semi-arid southwestern United States, heightened temperatures will likely lead to accelerated groundwater pumping to meet human needs, and altered storm patterns may lead to changes in flood regimes. All of these hydrologic changes have

Climate change has the potential to affect vegetation via changes in temperature and precipitation. In the semi-arid southwestern United States, heightened temperatures will likely lead to accelerated groundwater pumping to meet human needs, and altered storm patterns may lead to changes in flood regimes. All of these hydrologic changes have the potential to alter riparian vegetation. This research, consisting of two papers, examines relationships between hydrology and riparian vegetation along the Verde River in central Arizona, from applied and theoretical perspectives. One paper investigates how dominance of tree and shrub species and cover of certain functional groups change along hydrologic gradients. The other paper uses the Verde River flora along with that river's flood and moisture gradients to answer the question of whether functional groups can be defined universally. Drying of the Verde River would lead to a shift from cottonwood-willow streamside forest to more drought adapted desert willow or saltcedar, a decline in streamside marsh species, and decreased species richness. Effects drying will have on one dominant forest tree, velvet ash, is unclear. Increase in the frequency of large floods would potentially increase forest density and decrease average tree age and diameter. Correlations between functional traits of Verde River plants and hydrologic gradients are consistent with "leaf economics," or the axis of resource capture, use, and release, as the primary strategic trade-off for plants. This corresponds to the competitor-stress tolerator gradient in Grime's life history strategy theory. Plant height was also a strong indicator of hydrologic condition, though it is not clear from the literature if plant height is independent enough of leaf characteristics on a global scale to be considered a second axis. Though the ecohydrologic relationships are approached from different perspectives, the results of the two papers are consistent if interpreted together. The species that are currently dominant in the near-channel Verde River floodplain are tall, broad-leaf trees, and the species that are predicted to become more dominant in the case of the river drying are shorter trees or shrubs with smaller leaves. These results have implications for river and water management, as well as theoretical ecology.
ContributorsHazelton, Andrea Florence (Author) / Stromberg, Juliet C. (Thesis advisor) / Schmeeckle, Mark W (Committee member) / Franklin, Janet (Committee member) / Arizona State University (Publisher)
Created2011
156832-Thumbnail Image.png
Description
Drylands (arid and semi-arid grassland ecosystems) cover about 40% of the Earth's surface and support over 40% of the human population, most of which is in emerging economies. Human development of drylands leads to topsoil loss, and over the last 160 years, woody plants have encroached on drylands, both of

Drylands (arid and semi-arid grassland ecosystems) cover about 40% of the Earth's surface and support over 40% of the human population, most of which is in emerging economies. Human development of drylands leads to topsoil loss, and over the last 160 years, woody plants have encroached on drylands, both of which have implications for maintaining soil viability. Understanding the spatial variability in erosion and soil organic carbon and total nitrogen under varying geomorphic and biotic forcing in drylands is therefore of paramount importance. This study focuses on how two plants, palo verde (Parkinsonia microphylla, nitrogen-fixing) and jojoba (Simmondsia chinensis, non-nitrogen fixing), affect sediment transport and soil organic carbon and total nitrogen pools in a dryland environment north of Phoenix, Arizona. Bulk samples were systematically collected from the top 10 cm of soil in twelve catenae to control for the existence and type of plants, location to canopy (sub- or intercanopy, up- or downslope), aspect, and distance from the divide. Samples were measured for soil organic carbon and total nitrogen and an unmanned aerial system-derived digital elevation map of the field site was created for spatial analysis. A subset of the samples was measured for the short-lived isotopes 137Cs and 210Pbex, which serve as proxy erosion rates. Erosional soils were found to have less organic carbon and total nitrogen than depositional soils. There were clear differences in the data between the two plant types: jojoba catenae had higher short-lived isotope activity, lower carbon and nitrogen, and smaller canopies than those of palo verde, suggesting lower erosion rates and nutrient contributions from jojoba plants. This research quantifies the importance of biota on influencing hillslope and soil dynamics in a semi-arid field site in central AZ and finishes with a discussion on the global implications for soil sustainability.
ContributorsAlter, Samuel (Author) / Heimsath, Arjun M (Thesis advisor) / Throop, Heather L (Committee member) / Walker, Ian J (Committee member) / Arizona State University (Publisher)
Created2018
154676-Thumbnail Image.png
Description
Urban riparian corridors have the capacity to maintain high levels of abundance and biodiversity. Additionally, urban rivers also offer environmental amenities and can be catalysts for social and economic revitalization in human communities. Despite its importance for both humans and wildlife, blue space in cities used by waterbirds has received

Urban riparian corridors have the capacity to maintain high levels of abundance and biodiversity. Additionally, urban rivers also offer environmental amenities and can be catalysts for social and economic revitalization in human communities. Despite its importance for both humans and wildlife, blue space in cities used by waterbirds has received relatively little focus in urban bird studies. My principal objective was to determine how urbanization and water availability affect waterbird biodiversity in an arid city. I surveyed 36 transects stratified across a gradient of urbanization and water availability along the Salt River, a LTER long-term study system located in Phoenix, Arizona. Water physiognomy (shape and size) was the largest factor in shaping the bird community. Connectivity was an important element for waterbird diversity, but not abundance. Urbanization had guild-specific effects on abundance but was not important for waterbird diversity. Habitat-level environmental characteristics were more important than land use on waterbird abundance, as well as diversity. Diving and fish-eating birds were positively associated with large open bodies of water, whereas dabbling ducks, wading birds, and marsh species favored areas with large amounts of shoreline and emergent vegetation. My study supports that Phoenix blue space offers an important subsidy to migrating waterbird communities; while alternative habitat is not a replacement, it is important to consider as part of the larger conservation picture as traditional wetlands decline. Additionally, arid cities have the potential to support high levels of waterbird biodiversity, heterogeneous land use matrix can be advantageous in supporting regional diversity, and waterbirds are tolerant of urbanization if proper resources are provided via the habitat. The implications of this study are particularly relevant to urban planning in arid cities; Phoenix alone contains over 1,400 bodies of water, offering the opportunity to design and improve urban blue space to optimize potential habitat while providing public amenities.
ContributorsBurnette, Riley (Author) / Bateman, Heather (Thesis advisor) / Franklin, Janet (Committee member) / Allen, Daniel (Committee member) / Arizona State University (Publisher)
Created2016
155201-Thumbnail Image.png
Description
Throughout the Southwest, complex geology and physiography concomitant with climatic variability contribute to diverse stream hydrogeomorphologies. Many riparian plant species store their seeds in soil seed banks, and germinate in response to moisture pulses, but the climatic controls of this response are poorly understood. To better understand the

Throughout the Southwest, complex geology and physiography concomitant with climatic variability contribute to diverse stream hydrogeomorphologies. Many riparian plant species store their seeds in soil seed banks, and germinate in response to moisture pulses, but the climatic controls of this response are poorly understood. To better understand the ecological implications of a changing climate on riparian plant communities, I investigated seed bank responses to seasonal temperature patterns and to stream hydrogeomorphic type. I asked the following questions: Are there distinct suites of warm and cool temperature germinating species associated with Southwestern streams; how do they differ between riparian and terrestrial zones, and between ephemeral and perennial streams? How does alpha diversity of the soil seed bank differ between streams with ephemeral, intermittent, and perennial flow, and between montane and basin streams? Do streams with greater elevational change have higher riparian zone seed bank beta-diversity? Does nestedness or turnover contribute more to within stream beta-diversity?

I collected soil samples from the riparian and terrestrial zones of 21 sites, placing them in growth chambers at one of two temperature regimes, and monitoring emergence of seedlings for 12 weeks. Results showed an approximately equal number of warm and cool specialists in both riparian and terrestrials zones; generalists also were abundant, particularly in the riparian zone. The number of temperature specialists and generalists in the riparian zones did not differ significantly between perennial headwater and ephemeral stream types. In montane streams, alpha diversity of the soil seed bank was highest for ephemeral reaches; in basin streams the intermittent and perennial reaches had higher diversity. Spatial turnover was primarily responsible for within stream beta-diversity—reaches had different species assemblages. The large portion of temperature specialists found in riparian seed banks indicates that even with available moisture riparian zone plant community composition will likely be impacted by changing temperatures. However, the presence of so many temperature generalists in the riparian zones suggests that some component of the seed bank is adapted to variable conditions and might offer resilience in a changing climate. Study results confirm the importance of conserving multiple hydrogeomorphic reach types because they support unique species assemblages.
ContributorsSetaro, Danika (Author) / Stromberg, Juliet (Thesis advisor) / Franklin, Janet (Committee member) / Makings, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2016
157859-Thumbnail Image.png
Description
Soil organic carbon (SOC) is a critical component of the global carbon (C) cycle, accounting for more C than the biotic and atmospheric pools combined. Microbes play an important role in soil C cycling, with abiotic conditions such as soil moisture and temperature governing microbial activity and subsequent soil C

Soil organic carbon (SOC) is a critical component of the global carbon (C) cycle, accounting for more C than the biotic and atmospheric pools combined. Microbes play an important role in soil C cycling, with abiotic conditions such as soil moisture and temperature governing microbial activity and subsequent soil C processes. Predictions for future climate include warmer temperatures and altered precipitation regimes, suggesting impacts on future soil C cycling. However, it is uncertain how soil microbial communities and subsequent soil organic carbon pools will respond to these changes, particularly in dryland ecosystems. A knowledge gap exists in soil microbial community responses to short- versus long-term precipitation alteration in dryland systems. Assessing soil C cycle processes and microbial community responses under current and altered precipitation patterns will aid in understanding how C pools and cycling might be altered by climate change. This study investigates how soil microbial communities are influenced by established climate regimes and extreme changes in short-term precipitation patterns across a 1000 m elevation gradient in northern Arizona, where precipitation increases with elevation. Precipitation was manipulated (50% addition and 50% exclusion of ambient rainfall) for two summer rainy seasons at five sites across the elevation gradient. In situ and ex situ soil CO2 flux, microbial biomass C, extracellular enzyme activity, and SOC were measured in precipitation treatments in all sites. Soil CO2 flux, microbial biomass C, extracellular enzyme activity, and SOC were highest at the three highest elevation sites compared to the two lowest elevation sites. Within sites, precipitation treatments did not change microbial biomass C, extracellular enzyme activity, and SOC. Soil CO2 flux was greater under precipitation addition treatments than exclusion treatments at both the highest elevation site and second lowest elevation site. Ex situ respiration differed among the precipitation treatments only at the lowest elevation site, where respiration was enhanced in the precipitation addition plots. These results suggest soil C cycling will respond to long-term changes in precipitation, but pools and fluxes of carbon will likely show site-specific sensitivities to short-term precipitation patterns that are also expected with climate change.
ContributorsMonus, Brittney (Author) / Throop, Heather L (Thesis advisor) / Ball, Becky A (Committee member) / Hultine, Kevin R (Committee member) / Munson, Seth M (Committee member) / Arizona State University (Publisher)
Created2019