Matching Items (6)
Filtering by

Clear all filters

133573-Thumbnail Image.png
Description
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults and is linked to poor survival in affected patients due to its invasive and aggressive nature. The potential role of sexual dimorphism in GBM outcomes has long been overlooked. Notably, males and females differ in tumor behavior across

Glioblastoma (GBM) is the most common malignant primary brain tumor in adults and is linked to poor survival in affected patients due to its invasive and aggressive nature. The potential role of sexual dimorphism in GBM outcomes has long been overlooked. Notably, males and females differ in tumor behavior across many cancers1, which may be attributable to differences in genetic makeup and physiology, and in GBM there is a difference in incidence rate between males and females. The aim of the study was to investigate sex differences in GBM patients and compare median survival outcomes (OS) and progression-free survival outcomes (PFS) between sexes based on tumor location, laterality, age, tumor volume, and extent of resection. Patients who received standard-of-care (Stupp protocol) consisting of surgical intervention, concomitant chemoradiation, and 6 cycles of adjuvant temozolomide (TMZ) were included in this study to investigate sex differences in tumor characteristics (n = 216; males: n = 129, females: n = 87). Pre-surgical MRIs, specifically T1Gd sequences, were analyzed to determine tumor laterality and location. The patient cohort was divided into two groups indicating the extent of resection (EOR) they received: Gross Total Resection (GTR) and Subtotal Resection (STR). Additionally, the patient cohort was split into three age groups (Group I: 18-29, Group II: 30-49, and Group III: >50). Analyses were done using independent t-test and Cox proportional hazard modeling to determine which variables affect patient survival. The log-rank test was utilized to compare differences in survival rate in Kaplan-Meier analysis.
Overall, our results suggest that female patients receiving standard-of-care may have a better prognosis than male patients. There was a significant difference in OS and PFS in females showing an increase in survival. Additionally, survival was significantly different between sexes following resection, with female patients receiving STR or GTR having longer OS and PFS than males. The difference in median OS between sexes is more pronounced among younger patients. Among five different brain locations, female patients who possess a frontal lobe tumor may live longer than male patients. The apparent difference in OS for patients living >1000 days in the Kaplan-Meier plot warrants further investigation in a larger cohort. Following tumor resection, female patients with a frontal lobe tumor may survive longer in comparison to male patients. Comparing brain hemispheres, patients who possessed a tumor on the left may survive longer. Investigating tumor location and tumor laterality, our results suggests that female patients with a left frontal lobe tumor show a significant survival advantage in comparison to females who possess a right frontal lobe tumor.
ContributorsLorence, Julia (Author) / Swanson, Kristin (Thesis director) / Massey, Susan Christine (Committee member) / Rubin, Joshua (Committee member) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / School of Life Sciences (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
148084-Thumbnail Image.png
Description

Medicolegal forensic entomology is the study of insects to aid with legal investigations (Gemmellaro, 2017). Insect evidence can be used to provide information such as the post-mortem interval (PMI). Blow flies are especially useful as these insects are primary colonizers, quickly arriving at a corpse (Malainey & Anderson, 2020). The

Medicolegal forensic entomology is the study of insects to aid with legal investigations (Gemmellaro, 2017). Insect evidence can be used to provide information such as the post-mortem interval (PMI). Blow flies are especially useful as these insects are primary colonizers, quickly arriving at a corpse (Malainey & Anderson, 2020). The age of blow flies found at a scene is used to calculate the PMI. Blow fly age can be estimated using weather data as these insects are poikilothermic (Okpara, 2018). Morphological analysis also can be used to estimate age; however, it is more difficult with pupal samples as the pupae exterior does not change significantly as development progresses (Bala & Sharma, 2016). Gene regulation analysis can estimate the age of samples. MicroRNAs are short noncoding RNA that regulate gene expression (Cannell et al., 2008). Here, we aim to catalog miRNAs expressed during the development of three forensically relevant blow fly species preserved in several storage conditions. Results demonstrated that various miRNA sequences were differentially expressed across pupation. Expression of miR92b increased during mid pupation, aga-miR-92b expression increased during early pupation, and bantam, miR957, and dana-bantam-RA expression increased during late pupation. These results suggest that microRNA can be used to estimate the age of pupal samples as miRNA expression changes throughout pupation. Future work could develop a statistical model to accurately determine age using miRNA expression patterns.

ContributorsHerrera-Quiroz, Demian David (Author) / Parrott, Jonathan (Thesis director) / Weidner, Lauren (Committee member) / School of Mathematical and Natural Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148031-Thumbnail Image.png
Description

Forensic entomology is an important field of forensic science that utilizes insect evidence in criminal investigations. Blow flies (Diptera: Calliphoridae) are among the first colonizers of remains and are therefore frequently used in determining the minimum postmortem interval (mPMI). Blow fly development, however, is influenced by a variety of factors

Forensic entomology is an important field of forensic science that utilizes insect evidence in criminal investigations. Blow flies (Diptera: Calliphoridae) are among the first colonizers of remains and are therefore frequently used in determining the minimum postmortem interval (mPMI). Blow fly development, however, is influenced by a variety of factors including temperature and feeding substrate type. Unfortunately, dietary fat content remains an understudied factor on the development process, which is problematic given the relatively high rates of obesity in the United States. To study the effects of fat content on blow fly development we investigated the survivorship, adult weight and development of Lucilia sericata (Meigen; Diptera: Calliphoridae) and Phormia regina (Meigen; Diptera: Calliphoridae) on ground beef with a 10%, 20%, or 27% fat content. As fat content increased, survivorship decreased across both species with P. regina being significantly impacted. While P. regina adults were generally larger than L. sericata across all fat levels, only L. sericata demonstrated a significant (P < 0.05) difference in weight by sex. Average total development times for P. regina are comparable to averages published in other literature. Average total development times for L. sericata, however, were nearly 50 hours higher. These findings provide insight on the effect of fat content on blow fly development, a factor that should be considered when estimating a mPMI. By understanding how fat levels affect the survivorship and development of the species studied here, we can begin improving the practice of insect evidence analysis in casework.

ContributorsNoblesse, Andrew (Author) / Weidner, Lauren (Thesis director) / Parrott, Jonathan (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The field of forensic science has been growing and changing with improvements in DNA analysis. One field affected is forensic entomology, which is exploring many ways in which DNA can increase the application of insects in forensic science. One application being explored is the use of insects as a source

The field of forensic science has been growing and changing with improvements in DNA analysis. One field affected is forensic entomology, which is exploring many ways in which DNA can increase the application of insects in forensic science. One application being explored is the use of insects as a source of human DNA in a criminal investigation. Using flies as a source of foreign DNA can also be utilized in ecological research to conduct surveys on the various species present in different environments. This experiment intends to determine if flies can act as a viable source of alternate DNA. This will be accomplished by an ecological survey of DNA extracted from flies. DNA extractions were performed on flies gathered from parts of the greater Phoenix area. The DNA was then amplified with primers targeting different animal species and examined to observe what animals the flies had come in contact with. Several samples had contamination due to human error and were not able to be evaluated. One DNA extraction out of fifteen yielded pig DNA, indicating flies can be used as a source of DNA. Future experiments should use different animal primers and amplify sections of DNA that can determine the different species consumed by flies. Further research into flies as a DNA source can increase the amount of information available to forensic scientists as well as improve ecologist’s observation of an environment’s biodiversity.

ContributorsRiccomini, Brianna (Author) / Parrott, Jonathan (Thesis director) / Marshall, Pamela (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2023-05
132611-Thumbnail Image.png
Description
Consequences of drug abuse and addiction affect both men and women, but women tend to rapidly progress through drug addiction phases, have higher drug dependency, and have higher relapse rates. Ovarian hormones fluctuate with female reproductive cycles and are thought to cause increased sensitivity to psychostimulants. Additionally, intermittent social defeat

Consequences of drug abuse and addiction affect both men and women, but women tend to rapidly progress through drug addiction phases, have higher drug dependency, and have higher relapse rates. Ovarian hormones fluctuate with female reproductive cycles and are thought to cause increased sensitivity to psychostimulants. Additionally, intermittent social defeat stress induces social avoidance, weight loss, and long-lasting cross-sensitization to psychostimulants, which is associated with increased FosB/ΔFosB expression in the nucleus accumbens (NAc) shell. In this study, we examined the estrous cycle in female rats on social defeat stress-induced amphetamine cross-sensitization through FosB/ΔFosB expression in the NAc shell. Every third day for ten days, we induced social defeat stress in rats through short confrontations with a lactating female resident rat and her pups. In parallel, a group of rats were handled for control. Vaginal swabs were taken daily to assess estrous stage. Ten days after the last stress exposure, rats were administered a low dose of amphetamine (0.5 mg/kg, i.p.), which induced cross-sensitization in stressed rats, evidenced by enhanced locomotor activity. Approximately 3-10 days after amphetamine challenge, brain tissue was collected for immunohistochemistry analyses. Stressed female rats had lower body weight gain, higher social avoidance, and increased FosB/ΔFosB expression in the NAc shell. Differences in FosB/ΔFosB expression in the NAc shell was also observed in handled animals in different estrous stages. Furthermore, rats in proestrous/estrous stages displayed enhanced social defeat stress-induced amphetamine cross-sensitization in comparison to rats in metestrous/diestrous stages. Elucidating the effects of the female reproductive cycle on drug use may provide a novel approach to treatments or therapies in preventing women’s stress-induced vulnerability to substance abuse.
ContributorsAzuma, Alyssa (Author) / Neisewander, Janet (Thesis director) / Nikulina, Ella (Thesis director) / Hammer, Ronald (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165863-Thumbnail Image.png
Description
Forensic entomology is the use of insects in legal investigations, and relies heavily upon calculating the time of colonization (TOC) of insects on remains using temperature-dependent growth rates. If a body is exposed to temperatures that exceed an insect’s critical limit, TOC calculations could be severely affected. The determination of

Forensic entomology is the use of insects in legal investigations, and relies heavily upon calculating the time of colonization (TOC) of insects on remains using temperature-dependent growth rates. If a body is exposed to temperatures that exceed an insect’s critical limit, TOC calculations could be severely affected. The determination of critical thermal limits of forensically-relevant insects is crucial, as their presence or absence could alter the overall postmortem interval (PMI) calculation. This study focuses on the larvae of Phormia regina (Meigen) (Diptera: Calliphoridae), a forensically relevant blow fly common across North America. Three populations were examined (Arizona, Colorado, and New Jersey), and five day old larvae were exposed to one of two temperatures, 39℃ or 45℃, for five hours. Across all colonies, the survival rate was lower at 45℃ than 39℃, in both larval and emerged adult stages. The Arizona colony experienced a harsher drop in survival rates at 45℃ than either the Colorado or New Jersey colonies. This research suggests that the range of 39℃ - 45℃ approaches the critical thermal limit for P. regina, but does not yet exhibit a near or complete failure of survivorship that a critical temperature would cause at this duration of time. However, there is opportunity for further studies to examine this critical temperature by investigating other temperatures within the 39℃ - 45℃ range and at longer durations of time in these temperatures.
ContributorsMcNeil, Tara (Author) / Weidner, Lauren (Thesis director) / Meeds, Andrew (Committee member) / Barrett, The Honors College (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2022-05