Matching Items (10)
Filtering by

Clear all filters

152325-Thumbnail Image.png
Description
The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex

The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex (mPFC), and amygdala, are of special interest due to documented structural changes and their implication in post-traumatic stress disorder (PTSD). One of many notable chronic stress-induced changes include dendritic arbor restructuring, which reflect plasticity patterns in parallel with the direction of alterations observed in functional imaging studies in PTSD patients. For instance, chronic stress produces dendritic retraction in the hippocampus and mPFC, but dendritic hypertrophy in the amygdala, consistent with functional imaging in patients with PTSD. Some have hypothesized that these limbic region's modifications contribute to one's susceptibility to develop PTSD following a traumatic event. Consequently, we used a familiar chronic stress procedure in a rat model to create a vulnerable brain that might develop traits consistent with PTSD when presented with a challenge. In adult male rats, chronic stress by wire mesh restraint (6h/d/21d) was followed by a variety of behavioral tasks including radial arm water maze (RAWM), fear conditioning and extinction, and fear memory reconsolidation to determine chronic stress effects on behaviors mediated by these limbic structures. In chapter 2, we corroborated past findings that chronic stress caused hippocampal CA3 dendritic retraction. Importantly, we present new findings that CA3 dendritic retraction corresponded with poor spatial memory in the RAWM and that these outcomes reversed after a recovery period. In chapter 3, we also showed that chronic stress impaired mPFC-mediated extinction memory, findings that others have reported. Using carefully assessed behavior, we present new findings that chronic stress impacted nonassociative fear by enhancing contextual fear during extinction that generalized to a new context. Moreover, the generalization behavior corresponded with enhanced functional activation in the hippocampus and amygdala during fear extinction memory retrieval. In chapter 5, we showed for the first time that chronic stress enhanced amygdala functional activation during fear memory retrieval, i.e., reactivation. Moreover, these enhanced fear memories were resistant to protein synthesis interference to disrupt a previously formed memory, called reconsolidation in a novel attempt to weaken chronic stress enhanced traumatic memory. Collectively, these studies demonstrated the plastic and dynamic effects of chronic stress on limbic neurocircuitry implicated in PTSD. We showed that chronic stress created a structural and functional imbalance across the hippocampus, mPFC, and amygdala, which lead to a PTSD-like phenotype with persistent and exaggerated fear following fear conditioning. These behavioral disruptions in conjunction with morphological and functional imaging data reflect a chronic stress-induced imbalance between hippocampal and mPFC regulation in favor of amygdala function overdrive, and supports a novel approach for traumatic memory processing in PTSD.
ContributorsHoffman, Ann (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Hammer, Jr., Ronald P. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2013
156111-Thumbnail Image.png
Description
Chronic stress results in functional and structural changes to the hippocampus. Decades of research has led to insights into the mechanisms underlying the chronic stress-induced deficits in hippocampal-mediated cognition and reduction of dendritic complexity of hippocampal neurons. Recently, a considerable focus of chronic stress research has investigated the mechanisms behind

Chronic stress results in functional and structural changes to the hippocampus. Decades of research has led to insights into the mechanisms underlying the chronic stress-induced deficits in hippocampal-mediated cognition and reduction of dendritic complexity of hippocampal neurons. Recently, a considerable focus of chronic stress research has investigated the mechanisms behind the improvements in hippocampal mediated cognition when chronic stress ends and a post-stress rest period is given. Consequently, the goal of this dissertation is to uncover the mechanisms that allow for spatial ability to improve in the aftermath of chronic stress. In chapter 2, the protein brain derived neurotrophic factor (BDNF) was investigated as a mechanism that allows for spatial ability to show improvements following the end of chronic stress. It was found that decreasing the expression of BDNF in the hippocampus prevented spatial memory improvements following a post-stress rest period. Chapter 3 was performed to determine whether hippocampal CA3 apical dendritic complexity requires BDNF to show improvements following a post-stress rest period, and whether a receptor for BDNF, TrkB, mediates the improvements of spatial ability and dendritic complexity in a temporal manner, i.e. during the rest period only. These experiments showed that decreased hippocampal BDNF expression prevented improvements in dendritic complexity, and administration of a TrkB antagonist during the rest period also prevented the improvements in spatial ability and dendritic complexity. In chapter 4, the role of the GABAergic system on spatial ability following chronic stress and a post-stress rest period was investigated. Following chronic stress, it was found that male rats showed impairments on the acquisition phase of the RAWM and this correlated with limbic glutamic acid decarboxylase, a marker for GABA. In chapter 5, a transgenic mouse that expresses a permanent marker on all GABAergic interneurons was used to assess the effects of chronic stress and a post-stress rest period on hippocampal GABAergic neurons. While no changes were found on the total number of GABAergic interneurons, specific subtypes of GABAergic interneurons were affected by stressor manipulations. Collectively, these studies reveal some mechanisms behind the plasticity seen in the hippocampus in response to a post-stress rest period.
ContributorsOrtiz, J. Bryce (Author) / Conrad, Cheryl D. (Thesis advisor) / Newbern, Jason M. (Committee member) / Orchinik, Miles (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2018
135225-Thumbnail Image.png
Description
Monoamine neurotransmitters (e.g., serotonin, norepinephrine, and dopamine) are powerful modulators of mood and cognitive function in health and disease. We have been investigating the modulation of monoamine clearance in select brain regions via organic cation transporters (OCTs), a family of nonselective monoamine transporters. OCTs are thought to complement the actions

Monoamine neurotransmitters (e.g., serotonin, norepinephrine, and dopamine) are powerful modulators of mood and cognitive function in health and disease. We have been investigating the modulation of monoamine clearance in select brain regions via organic cation transporters (OCTs), a family of nonselective monoamine transporters. OCTs are thought to complement the actions of selective monoamine transporters in the brain by helping to clear monoamines from the extracellular space; thus, assisting to terminate the monoamine signal. Of particular interest, stress hormones (corticosterone; CORT) inhibit OCT3-mediated transport of monoamine, to putatively lead to prolonged monoamine signaling. It has been demonstrated that stress levels of CORT block OCT3 transport in the rat hypothalamus, an effect that likely underlies the rapid, stress-induced increase in local monoamines. We examined the effect of chronic variable stress (CVS) on the development of mood disorders and OCT3 expression in limbic and hypothalamic regions of the rat brain. Animals subjected to CVS (14-days with random stressor exposure two times/day) showed reduced body weight gain, indicating that CVS was perceived as stressful. However, behavioral tests of anxiety and depressive-like behaviors in rats showed no group differences. Although there were no behavioral effects of stress, molecular analysis revealed that there were stress-related changes in OCT3 protein expression. In situ hybridization data confirmed that OCT3 mRNA is expressed in the hippocampus, amygdala, and hypothalamus. Analysis of Western blot data by two-way ANOVA revealed a significant treatment effect on OCT3 protein levels, with a significant decrease in OCT3 protein in the amygdala and hippocampus in CVS rats, compared to controls. These data suggest an important role for CORT sensitive OCT3 in the reduction of monoamine clearance during stress.
ContributorsBoyll, Piper Savannah (Author) / Orchinik, Miles (Thesis director) / Conrad, Cheryl (Committee member) / Talboom, Joshua (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135343-Thumbnail Image.png
Description
The stress response facilitates our ability to deal effectively with threatening situations, but exposure to severe or chronic stressors can lead to undesirable neural, physiological, and behavioral outcomes. Chronic stress is associated with structural changes in the rat hippocampus, with corresponding deficits in learning and memory. Recent studies have uncovered

The stress response facilitates our ability to deal effectively with threatening situations, but exposure to severe or chronic stressors can lead to undesirable neural, physiological, and behavioral outcomes. Chronic stress is associated with structural changes in the rat hippocampus, with corresponding deficits in learning and memory. Recent studies have uncovered an inherent neuroplasticity that allows the hippocampus to recover from these stress-induced neural changes. Underlying mechanisms likely involve several different cellular and molecular pathways. In order to gain a more comprehensive understanding of these pathways, we investigated differences in protein expression throughout the timeline of chronic stress and recovery. Male Sprague-Dawley rats were randomly assigned to chronic restraint stress for 6hr/d/10d or 6hr/d/21d, stress for 6hr/d/21d followed by a recovery period of no stress for 10 or 21 days, or a control group. The proteome from the hippocampus of these rats was sequenced using liquid chromatography tandem mass spectrometry (LC-MS/MS) and analyzed. We hypothesized that chronic stress alters interneuronal signaling in the hippocampus by enhancing or attenuating the expression of proteins responsible for synaptic plasticity (functional) and neuronal structure (morphology). So far we have found that structural proteins, such as alpha-internexin, homer protein homolog 3, neurofilament light, and vimentin were significantly altered by chronic stress and recovery. In contrast, proteins necessary for or associated with myelination such as 2',3'-cyclic-nucleotide 3'-phosphodiesterase, myelin-associated glycoprotein, myelin basic protein S, and myelin proteolipid protein were significantly downregulated by chronic stress. Collectively, these results will provide a resource for further investigations into the mechanisms of the brain's recovery from chronic stress.
ContributorsKachemov, Marketta Marilyn (Author) / Orchinik, Miles (Thesis director) / Pirrotte, Patrick (Committee member) / Conrad, Cheryl (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134581-Thumbnail Image.png
Description
Chronic stress often leads to cognitive deficits, especially within the spatial memory domain mediated by the hippocampus. When chronic stress ends and a no-stress period ensues (i.e., washout, WO), spatial ability improves, which can be better than non-stressed controls (CON). The WO period is often the same duration as the

Chronic stress often leads to cognitive deficits, especially within the spatial memory domain mediated by the hippocampus. When chronic stress ends and a no-stress period ensues (i.e., washout, WO), spatial ability improves, which can be better than non-stressed controls (CON). The WO period is often the same duration as the chronic stress paradigm. Given the potential benefit of a post-stress WO period on cognition, it is important to investigate whether this potential benefit of a post-stress WO period has long-lasting effects. In this project, chronic restraint (6hr/d/21d) in Sprague-Dawley rats was used, as it is the minimum duration necessary to observe spatial memory deficits. Two durations of post-stress WO were used following the end of chronic restraint, 3 weeks (STR-WO3) and 6 weeks (STR-WO6). Immediately after chronic stress (STR-IMM) or the WO periods, rats were tested on various cognitive tests. We corroborated past studies that chronic stress impaired spatial memory (STR-IMM vs CON). Interestingly, STR-WO3 and STR-WO6 failed to demonstrate improved spatial memory on a radial arm water maze task, performing similarly as STR-IMM. Performance outcomes were unlikely from differences in anxiety or motivation because rats from all conditions performed similarly on an open field task and on a simple object recognition paradigm, respectively. However, performance on object placement was unusual in that very few rats explored, suggesting some degree of anxiety or fear in all groups. One possible interpretation of the unusual results of the 3 week washout group may be attributed to the different spatial memory tasks used across studies or external factors from the study. Further exploration of these other factors led to the conclusion that they did not play a role and the STR-WO3 RAWM data were anomalous to other studies. This suggests that a washout period following chronic stress may not be fully understood.
ContributorsFlegenheimer, Aaron Embden (Author) / Conrad, Cheryl (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Ortiz, J. Bryce (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134855-Thumbnail Image.png
Description
Chronic stress impairs spatial working memory, attention set-shifting, and response inhibition. The relationship between these functions and the potential underlying neurocircuitry, such as the medial prefrontal cortex (mPFC), needs further research to understand how chronic stress impacts these functions. This study focused on the infralimbic (IL) and prelimbic (PRL) regions

Chronic stress impairs spatial working memory, attention set-shifting, and response inhibition. The relationship between these functions and the potential underlying neurocircuitry, such as the medial prefrontal cortex (mPFC), needs further research to understand how chronic stress impacts these functions. This study focused on the infralimbic (IL) and prelimbic (PRL) regions of the mPFC, to examine its involvement in two behavioral tasks, fixed minimum interval (FMI) and radial arm water maze (RAWM), following chronic stress, and the relationship between the two paradigms. A previous study failed to find a significant correlation between spatial working memory and response, both functions mediated by the PFC, even though chronic stress disrupted both outcomes. Thus, the purpose of this study was to investigate the functional activation of the mPFC, following chronic stress in these two paradigms, in order to gain an understanding of the neurocircuitry involved within this region. The behavioral outcomes were performed prior to my involvement in the project, and the results corroborate previous findings that chronic stress impairs response inhibition on FMI and spatial working memory on RAWM. My honors thesis involved quantifying the immunohistochemistry-stained tissue to assess the functional activation of the mPFC. Over the course of six months, my work involved identifying the border between IL and PRL regions by overlaying captured images of tissues, starting at a lower magnification of 40x. Afterwards, images were recaptured at higher magnifications (100x) to quantify Fos-like counts of functional activation. No overt changes were found following chronic stress in Fos-like counts after performance on FMI or RAWM. However, response inhibition on the FMI task showed a relationship with the IL function; non-stressed rats displayed a positive correlation between response inhibition and Fos-like profiles. In contrast, chronically stressed rats revealed a negative correlation between response inhibition and Fos-like profiles. The IL cortex is revealed to facilitate extinction of a learned behavior. Thus, these results present a possible interpretation that there is an association, non-stressed rats suppressing a previously learned response, being formed.
ContributorsLe, Brittany Quynh (Author) / Conrad, Cheryl (Thesis director) / Sanabria, Federico (Committee member) / Judd, Jessica (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134795-Thumbnail Image.png
Description
Chronic restraint stress leads to apical dendritic retraction in CA3 pyramidal neurons and often no quantifiable changes in CA1 dendritic complexity. When chronic stress ends, a post-stress recovery period results in an enhancement in CA3 dendritic complexity. We investigated the relationship between CA3 and CA1 pyramidal neurons to determine whether

Chronic restraint stress leads to apical dendritic retraction in CA3 pyramidal neurons and often no quantifiable changes in CA1 dendritic complexity. When chronic stress ends, a post-stress recovery period results in an enhancement in CA3 dendritic complexity. We investigated the relationship between CA3 and CA1 pyramidal neurons to determine whether dendritic restructuring in CA3 neurons leads to region-specific changes in the dendritic complexity of CA1 neurons. Adult male Sprague-Dawley rats were restrained (wire mesh, 6h/d/21d) and brains were removed soon after restraint ended (Str-Imm) or after a 21d post-stress recovery period (Str-Rec). In addition, BDNF downregulation targeting the CA3 region prevents enhancement in dendritic complexity following recovery in chronically stressed rats, providing robust conditions to investigate the CA3-CA1 relationship. Consequently, rats were infused into the CA3 area with either an AAV vector with a coding sequence against BDNF (shRNA) or a sequence with no known mRNA complements (Scr). Apical and basal dendritic complexity of CA3 and CA1 was quantified by counting total dendritic bifurcations and dendritic intersections using the Sholl analysis (20 µm distances from soma). Please note that the quantification of the CA3 dendritic arbors was not part of this thesis project. The outcome of that investigation revealed that apical CA3 dendritic retraction was found in Str-Imm-Scr and Str-Rec-shRNA. For the CA1 apical area, gross dendritic bifurcation differences were not detected, but the Sholl quantification revealed regionally-enhanced dendritic complexity that varied by distance from the soma at the distal apical dendrites (Str-Imm-Scr) and proximal basal dendrites (Str-Rec-shRNA). For the latter, significant increases in basal branch points were detected with total branch point quantification method. Moreover, a correlation using all groups revealed a significant inverse relationship between CA3 apical dendritic complexity and CA1 basal dendritic complexity. The results demonstrate that chronic stress-induced CA3 apical dendritic retraction may relate to region-specific changes in CA1 dendritic complexity. The inability of past studies to detect changes in CA1 dendritic complexity may be due to the shortcoming of gross dendritic arbor measures in accounting for subtle region-specific alterations. To address this, the current study included a cohort with BDNF downregulated in the CA3 region. Overall, this suggests that decreased levels of BDNF in the hippocampus provide robust conditions in which changes to CA1 dendritic complexity can be detected.
ContributorsDaas, Eshaan Jatin (Author) / Conrad, Cheryl (Thesis director) / Orchinik, Miles (Committee member) / Ortiz, J. Bryce (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
147801-Thumbnail Image.png
Description

Premature babies are at risk of death from immature lung development. For this reason, pregnant mothers at risk for preterm delivery are administered dexamethasone (DEX), a synthetic glucocorticoid that promotes fetal lung development. However, exposure to DEX in utero is associated with low birth weight and cardiovascular development pathologies. Moreover,

Premature babies are at risk of death from immature lung development. For this reason, pregnant mothers at risk for preterm delivery are administered dexamethasone (DEX), a synthetic glucocorticoid that promotes fetal lung development. However, exposure to DEX in utero is associated with low birth weight and cardiovascular development pathologies. Moreover, our lab found that DEX administration in-utero leads to a sex-specific increase in stress-induced tachycardia in female, but not male offspring. This project seeks to expand on this preliminary finding of the heart by examining local effectors of activity from the sympathetic system (tyrosine hydroxylase and catechol-o-methyltransferase). Tyrosine hydroxylase was measured as it catalyzes the rate limiting step of norepinephrine synthesis while catechol-O- methyltransferase was studied as it catalyzes the degradation of norepinephrine. Acetylcholinesterase was used to measure parasympathetic activity as it catalyzes the degradation of the primary neurotransmitter of the parasympathetic nervous system, acetylcholine. Analyses of sympathetic as well as parasympathetic activity were done to determine influences of in-utero DEX exposure on autonomic regulation in adulthood. Pregnant rats were administered DEX (0.4 mg/kg, i.p.) or vehicle (20% w/v 2-hydroxypropyl ß- cyclodextran) at gestation days 18-21, with euthanasia of offspring occurring at around the time the offspring reached 13-15 weeks of age. Left ventricles and right atria were pulverized, processed and subjected to western blot analysis to determine expression of proteins of interest. Males exposed to DEX in-utero saw a decrease in tyrosine hydroxylase expression in left ventricle and right atrium when compared to vehicle control, a difference not seen with females. In addition, catechol-o-methyltransferase expression was increased in right atria from male, but not female rats. Acetylcholinesterase expression was reduced in the right atria of female, but not male rats. The present findings suggest reduced norepinephrine signaling in the heart of male, but not female DEX-exposed offspring. Given that we have previously found that female, but not male rats exhibit exaggerated stress-induced tachycardia, our current findings suggest that males possess a sex-specific compensatory mechanism allowing the heart to resist increased sympathetic signaling from the brain, one that females do not possess. The underlying mechanics of this proposed mechanism are unclear, and further investigation is needed in this subject to determine the significance of the findings from our study.

ContributorsSharma, Arpan (Author) / Conrad, Cheryl (Thesis director) / Hale, Taben (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
158360-Thumbnail Image.png
Description
Post-Traumatic Stress Disorder (PTSD) is characterized by intrusive memories from a traumatic event. Current therapies rarely lead to complete remission. PTSD can be modeled in rodents using chronic stress (creating vulnerable phenotype) combined with fear conditioning (modeling a traumatic experience), resulting in attenuated extinction learning and impaired recall of extinction.

Post-Traumatic Stress Disorder (PTSD) is characterized by intrusive memories from a traumatic event. Current therapies rarely lead to complete remission. PTSD can be modeled in rodents using chronic stress (creating vulnerable phenotype) combined with fear conditioning (modeling a traumatic experience), resulting in attenuated extinction learning and impaired recall of extinction. Studies typically investigate cognition soon after chronic stress ends; however, as days and weeks pass (“rest” period) some cognitive functions may improve compared to soon after stress. Whether a rest period between chronic stress and fear conditioning/extinction would lead to improvements is unclear. In Chapter 2, male rats were chronically stressed by restraint (6hr/d/21d), a reliable method to produce cognitive changes, or assigned to a non-stressed control group (CON). After chronic stress ended, fear conditioning occurred within a day (STR-IMM), or after three (STR-R3) or six weeks (STR-R6). During the first three extinction trials, differences emerged in fear to the non-shock context: STR-R3/R6 showed significantly less fear to the context than did STR-IMM or CON. Differences were unlikely attributable to generalization or to second-order conditioning. Therefore, a rest period following chronic stress may lead to improved fear extinction and discrimination between the conditioned stimulus and environment. In Chapter 3, the infralimbic cortex (IL) was investigated due to the IL’s importance in fear extinction. Rats were infused with chemogenetics to target IL glutamatergic neurons and then assigned to CON, STR-IMM or STR-R3. During the rest period of STR-R3 and the restraint for STR-IMM, the IL was inhibited using CNO (1mg/kg BW, i.p., daily), which ended before behavioral testing. STR-R3 with IL inhibition failed to demonstrate a tone-shock association as spontaneous recovery was not observed. CON with IL inhibition behaved somewhat like STR-IMM; freezing to the extinction context was enhanced. Consequently, inhibiting IL function during the rest period following chronic stress was particularly disruptive for learning in STR-R3, impaired freezing to a safe context for CON, and had no effect in STR-IMM. These studies show that time since the end of chronic stress (recently ended or with a delay) can interact with IL functioning to modify fear learning and response.
ContributorsJudd, Jessica Michelle (Author) / Conrad, Cheryl D. (Thesis advisor) / Sanabria, Federico (Committee member) / Olive, Michael F (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2020
131967-Thumbnail Image.png
Description
Women are twice as likely as men to develop Major Depressive Disorder (MDD), and current MDD therapies are only effective for about a third of patients. Hormonal transitions, specifically those involving estradiol (E2), have been found to contribute to this increased vulnerability in women. This study aimed to investigate potential

Women are twice as likely as men to develop Major Depressive Disorder (MDD), and current MDD therapies are only effective for about a third of patients. Hormonal transitions, specifically those involving estradiol (E2), have been found to contribute to this increased vulnerability in women. This study aimed to investigate potential mechanisms underlying the sex differences seen in MDD vulnerability, specifically the role of E2. The brain region-specific changes induced by chronic stress differ for female rats than for male rats. Therefore, we aimed to determine the effects of sex and chronic stress on E2 expression in four brain regions: the hippocampus, medial prefrontal cortex, amygdala, and cerebellum. Sprague-Dawley rats (n = 48, 24 males, 24 females; n=12/Tx group) were subjected to daily wire mesh restraint stress (6 h/21 days), and were euthanized and dissected the day following the end of chronic restraint stress (day 22). Ultra high-pressure liquid chromatography-mass spectroscopy was used to directly measure E2 in the brain regions. Quantitative real-time PCR was used to indirectly assess E2 expression via mRNA for aromatase (ARO-L) and estrogen receptors (ERβ, ERɑ, and GPR30), as well as expression of inflammatory cytokines (IL-1β and TNF-ɑ). Our findings suggest that chronic stress may lead to changes in local estradiol expression in the brain that are both sex-dependent and brain region-specific, while the data are preliminary given the small sample size. We found that expression of ARO-L mRNA, a measure of local E2 production, tended to increase in the HIPP, but decrease in the mPFC following chronic stress, and in the mPFC this pattern was only observed in males. Local estradiol production in the brain seems to act as a potential compensatory mechanism in the hippocampus, but as a protective mechanism in the mPFC, which is highly sensitive to chronic stress.
ContributorsSmith, Elliot Ann (Author) / Conrad, Cheryl (Thesis director) / Presson, Clark (Committee member) / Department of Psychology (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05