Matching Items (4)
Filtering by

Clear all filters

133806-Thumbnail Image.png
Description
Introduction: Individuals with rotator cuff tears (RCT) have been found to compensate in their movement patterns by using lower thoracohumeral elevation angles during certain tasks, as well as increased internal rotation of the shoulder (Vidt et al., 2016). The leading joint hypothesis (LJH) suggests there is one leading joint that

Introduction: Individuals with rotator cuff tears (RCT) have been found to compensate in their movement patterns by using lower thoracohumeral elevation angles during certain tasks, as well as increased internal rotation of the shoulder (Vidt et al., 2016). The leading joint hypothesis (LJH) suggests there is one leading joint that creates the foundation for the entire limb motion, and there are other subordinate joints that monitor the passive interaction torque (IT) and create a net torque (NT) aiding to limb motions required for the task. This experiment hopes to establish a better understanding of joint control strategies during a wide range of arm movements. Based off of the LJH, we hypothesize that when a subject has a rotator cuff tear, their performance of planar and three- dimensional motions should be altered not only at the shoulder, which is often the leading joint, but also at other joints on the arm such as the elbow and wrist.

Methods: There were 3 groups of participants: healthy younger adults (age 21.74 ± 1.97), healthy older adult controls (age 69.53 ± 6.85), and older adults with a RCT (age 64.33 ± 4.04). All three groups completed strength testing, horizontal drawing and pointing tasks, and three-dimensional (3D) activities of daily living (ADLs). Kinematic and kinetic variables of the arm were obtained during horizontal and 3D tasks using data from 13 reflective markers placed on the arm and trunk, 8 motion capture cameras, and Cortex motion capture software (Motion Analysis Corp., Santa Rosa, CA). During these tasks, electromyography (EMG) electrodes were placed on 12 muscles along the arm that affect shoulder, elbow, and wrist rotation. Strength testing tasks were measured using a dynamometer. All strength testing and 3D tasks were completed for three trials and horizontal tasks were completed for two trials.

Results: Results of the younger adult participants showed that during the forward portion of seven 3D tasks, there were four phases of different joint control mechanics seen in a majority of the movements. These phases included active rotation of both the shoulder and the elbow joint, active rotation of the shoulder with passive rotation of the elbow, passive rotation of the shoulder with active rotation of the elbow, and passive rotation of both the shoulder and the elbow. Passive rotation during movements was a result of gravitational torque (GT) on the different segments of the arm and IT caused as a result the multi-joint structure of human limbs. The number of tested participants for the healthy older adults and RCT older adults groups is not yet high enough to produce significant results and because of this their results are not reported in this article.

Discussion: Through the available results, multiple phases were found where one or both of the joints of the arm moved passively which further supports the LJH and extends it to include 3D movements. This article is a part of a bigger project which hopes to get a better understanding of how older adults adjust to large passive torques acting on the arm during 3D movements and how older adults with RCTs compensate for the decreased strength, the decreased range of motion (ROM), and the pain that accompany these types of tears. Hopefully the results of this experiment lead to more research toward better understanding how to treat patients with RCTs.
ContributorsGarnica, Nicholas (Co-author) / Perrine, Austin (Co-author) / Schalk, Courtney (Co-author) / Dounskaia, Natalia (Thesis director) / Vidt, Meghan (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133230-Thumbnail Image.png
Description
Central to current conceptions concerning the function of the nervous system is the consideration of how it manages to maintain precise control for repetitive tasks such as reaching, given the extensive observable mechanical degrees of freedom. Especially in the upper extremities, there are an infinite number of orientations (degrees of

Central to current conceptions concerning the function of the nervous system is the consideration of how it manages to maintain precise control for repetitive tasks such as reaching, given the extensive observable mechanical degrees of freedom. Especially in the upper extremities, there are an infinite number of orientations (degrees of freedom) that can produce the same ultimate outcome. Consider, for example, a man in a seated position pointing to an object on a table with his index finger: even if we vastly simplify the mechanics involved in that action by considering three principle joints - the shoulder, elbow, and wrist - there are an infinite number of upper arm orientations that would result in the same position of the man's index finger in three-dimensional space. It has been hypothesized that the central nervous system is capable of simplifying reaching tasks by organizing the DOFs; this suggests that repetitive, simple tasks such as reaching can be planned, that the variability in repetitive tasks is minimized, and that the central nervous system is capable of increasing stability by instantaneously resisting perturbations. Previous literature indicates that variability is decreased and stability increased in trained upper extremity movement. In this study, mechanical discrepancies between violinists of varying levels of experience were identified. It was hypothesized that variability in the positional error (deviation from an expected line of motion) and velocity of the bow, as well as the produced variability in resultant elbow angles, would decrease with increasing proficiency, and that training would have no observable effect on average peak bow velocity. Data acquisition was accomplished by constructing LED triads and implementing a PhaseSpace 3D Motion Capture system. While the positional variance and peak velocity magnitude of the bow appeared unaffected by training (p >> 0.05), more advanced players demonstrated significantly higher variability in bow velocity (p << 0.001). As such, it can be concluded that repetitive training does manifest in changes in variability; however, further investigation is required to reveal the nature of these changes.
ContributorsCulibrk, Robert (Author) / Helms Tillery, Stephen (Thesis director) / Tanner, Justin (Committee member) / Barrett, The Honors College (Contributor)
Created2018-05
132796-Thumbnail Image.png
Description
This thesis surveys and analyzes applications of machine learning techniques to the fields of animation and computer graphics. Data-driven techniques utilizing machine learning have in recent years been successfully applied to many subfields of animation and computer graphics. These include, but are not limited to, fluid dynamics, kinematics, and character

This thesis surveys and analyzes applications of machine learning techniques to the fields of animation and computer graphics. Data-driven techniques utilizing machine learning have in recent years been successfully applied to many subfields of animation and computer graphics. These include, but are not limited to, fluid dynamics, kinematics, and character modeling. I argue that such applications offer significant advantages which will be pivotal in advancing the fields of animation and computer graphics. Further, I argue these advantages are especially relevant in real-time implementations when working with finite computational resources.
ContributorsSaba, Raphael Lucas (Author) / Foy, Joseph (Thesis director) / Olson, Loren (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
130998-Thumbnail Image.png
Description
Purpose: The purpose of this study was to observe similarities and differences within soccer players during a 5-10-5 agility drill between the first and second change of direction. Overall body mechanics and center of mass position relative to the feet were assessed within players. Methods: A total of 6 soccer

Purpose: The purpose of this study was to observe similarities and differences within soccer players during a 5-10-5 agility drill between the first and second change of direction. Overall body mechanics and center of mass position relative to the feet were assessed within players. Methods: A total of 6 soccer players participated in the study. Each player ran through the 5-10-5 agility drill 10 times. All trials were video recorded and oriented to include the whole drill. Data was assessed using the program Kinovea (open-source) for 5 out of the 6 players. One player was excluded due to not meeting the inclusion criteria. The metrics assessed were total time to complete the task, the change of direction time, the time it took for the lag leg to stop moving laterally to the planting of the lead leg, and the leg angle. All tasks, except for total task time, were assessed for both the first and second change of direction. An individual analysis was performed for each player in order to obtain observational differences between the first and second change of direction for players. Results: The total task time determined the order of the players, thus the fastest player became player 1 and the slowest player 5. Players 1, 2, 4, and 5 were all found to have a statistical significance in change of direction time. When statistically significant the change of direction time was faster for the second change of direction. The slower players, player 4 and 5, had a statistically significant difference in leg angle, with the leg angle being larger for the first change of direction. Player 3 had no significant differences between any of the metrics. When looking closer at the faster players an observable difference in center of mass position relative to the feet was observed. The second change of direction showed the center of mass being positioned further anterior to the feet, and better mechanics were used to slow down and prepare to change direction. Discussion: The center of mass position relative to the feet could likely explain why the second change of direction was faster for 4 out of the 5 players. With the current information from the present study it could be adapted to help coaches instruct players to incorporate better mechanics into their change of direction tasks, and possibly improve their agility. This study could be improved by using multiple camera angles, high definition cameras, body markers, and force plates. By using these tools information could be obtained about variables that impact change of direction tasks but were not measured in the current study.
ContributorsTaylor, Devyn Kaye (Author) / Ramos, Chris (Thesis director) / Nolan, Nicole (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12