Matching Items (6)
Filtering by

Clear all filters

132878-Thumbnail Image.png
Description
This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver

This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver that their “buddy diver” is having an emergency and is requiring attention. Distance and direction are intended to be included on the heads up display, informing the diver of the relative location of their “buddy diver” in case they have lost sight of them. A set of requirements was created to find the most practical solutions. From these requirements and extensive research, three potential methods of underwater communication were found; electromagnetic waves in the radio frequency range, optical waves, and acoustic waves. Of these three methods, acoustic waves were found to be most feasible for the scope of this project. Using modems and transducers, an acoustic signal is able to be sent from one diver to another in order to detect relative location as well as send a message of distress. Ultimately, two possible concepts were designed, with one deemed as most advantageous. This concept engages the use of four transponders that have the ability to transmit and receive high frequencies, minimizes blind spots, and is small enough to not cause discomfort or be obstructive to the divers experience. Due to the nature of this application, the team is able to propose a path of development for a compact communication system between scuba divers.
ContributorsNossaman, Grace (Co-author) / Hocken, Chase (Co-author) / Padilla, Bryan (Co-author) / Richmond, Christ D. (Thesis director) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132879-Thumbnail Image.png
Description
This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver

This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver that their “buddy diver” is having an emergency and is requiring attention. Distance and direction are intended to be included on the heads up display, informing the diver of the relative location of their “buddy diver” in case they have lost sight of them. A set of requirements was created to find the most practical solutions. From these requirements and extensive research, three different methods of underwater communication were found, but only one, acoustics, was feasible for the scope of this project. Using modems and transducers, an acoustic signal is able to be sent from one diver to another in order to detect relative location as well as send a message of distress. Ultimately, two possible concepts were designed, with one deemed as most advantageous. This concept engages the use of four transponders that have the ability to transmit and receive high frequencies, minimizes blind spots, and is small enough to not cause discomfort or be obstructive to the divers experience.
ContributorsHocken, Chase (Co-author) / Nossaman, Grace (Co-author) / Padilla, Bryan (Co-author) / Richmond, Christ D (Thesis director) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132880-Thumbnail Image.png
Description
This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver

This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver that their “buddy diver” is having an emergency and is requiring attention. Distance and direction are intended to be included on the heads up display, informing the diver of the relative location of their “buddy diver” in case they have lost sight of them. A set of requirements was created to find the most practical solutions. From these requirements and extensive research, three potential methods of underwater communication were found; electromagnetic waves in the radio frequency range, optical waves, and acoustic waves. Of these three methods, acoustic waves were found to be most feasible for the scope of this project. Using modems and transducers, an acoustic signal is able to be sent from one diver to another in order to detect relative location as well as send a message of distress. Ultimately, two possible concepts were designed, with one deemed as most advantageous. This concept engages the use of four transponders that have the ability to transmit and receive high frequencies, minimizes blind spots, and is small enough to not cause discomfort or be obstructive to the divers experience. Due to the nature of this application, the team is able to propose a path of development for a compact communication system between scuba divers.
ContributorsPadilla, Bryan (Co-author) / Nossaman, Grace (Co-author) / Hocken, Chase (Co-author) / Richmond, Christ D. (Thesis director) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
148040-Thumbnail Image.png
Description

Purpose: This qualitative research aimed to create a developmentally and gender-appropriate game-based intervention to promote Human Papillomavirus (HPV) vaccination in adolescents. <br/>Background: Ranking as the most common sexually transmitted infection, about 80 million Americans are currently infected by HPV, and it continues to increase with an estimated 14 million new

Purpose: This qualitative research aimed to create a developmentally and gender-appropriate game-based intervention to promote Human Papillomavirus (HPV) vaccination in adolescents. <br/>Background: Ranking as the most common sexually transmitted infection, about 80 million Americans are currently infected by HPV, and it continues to increase with an estimated 14 million new cases yearly. Certain types of HPV have been significantly associated with cervical, vaginal, and vulvar cancers in women; penile cancers in men; and oropharyngeal and anal cancers in both men and women. Despite HPV vaccination being one of the most effective methods in preventing HPV-associated cancers, vaccination rates remain suboptimal in adolescents. Game-based intervention, a novel medium that is popular with adolescents, has been shown to be effective in promoting health behaviors. <br/>Methods: Sample/Sampling. We used purposeful sampling to recruit eight adolescent-parent dyads (N = 16) which represented both sexes (4 boys, 4 girls) and different racial/ethnic groups (White, Black, Latino, Asian American) in the United States. The inclusion criteria for the dyads were: (1) a child aged 11-14 years and his/her parent, and (2) ability to speak, read, write, and understand English. Procedure. After eligible families consented to their participation, semi-structured interviews (each 60-90 minutes long) were conducted with each adolescent-parent dyad in a quiet and private room. Each dyad received $50 to acknowledge their time and effort. Measure. The interview questions consisted of two parts: (a) those related to game design, functioning, and feasibility of implementation; (b) those related to theoretical constructs of the Health Belief Model (HBM) and the Theory of Planned Behavior (TPB). Data analysis. The interviews were audio-recorded with permission and manually transcribed into textual data. Two researchers confirmed the verbatim transcription. We use pre-developed codes to identify each participant’s responses and organize data and develop themes based on the HBM and TPB constructs. After the analysis was completed, three researchers in the team reviewed the results and discussed the discrepancies until a consensus is reached.<br/>Results: The findings suggested that the most common motivating factors for adolescents’ HPV vaccination were its effectiveness, benefits, convenience, affordable cost, reminders via text, and recommendation by a health care provider. Regarding the content included in the HPV game, participants suggested including information about who and when should receive the vaccine, what is HPV and the vaccination, what are the consequences if infected, the side effects of the vaccine, and where to receive the vaccine. The preferred game design elements were: 15 minutes long, stories about fighting or action, option to choose characters/avatars, motivating factors (i.e., rewards such as allowing users to advance levels and receive coins when correctly answering questions), use of a portable electronic device (e.g., tablet) to deliver the education. Participants were open to multiplayer function which assists in a facilitated conversation about HPV and the HPV vaccine. Overall, the participants concluded enthusiasm for an interactive yet engaging game-based intervention to learn about the HPV vaccine with the goal to increase HPV vaccination in adolescents. <br/>Implications: Tailored educational games have the potential to decrease the stigma of HPV and HPV vaccination, increasing communication between the adolescent, parent, and healthcare provider, as well as increase the overall HPV vaccination rate.

ContributorsBeaman, Abigail Marie (Author) / Chen, Angela Chia-Chen (Thesis director) / Amresh, Ashish (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
164815-Thumbnail Image.png
Description

This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict

This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict the following: the individual’s disease status and the medication intake time relative to performing the finger-tapping activity, respectively.

ContributorsGin, Taylor (Author) / McCarthy, Alexandra (Co-author) / Berisha, Visar (Thesis director) / Baumann, Alicia (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05
164816-Thumbnail Image.png
Description

This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict

This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict the following: the individual’s disease status and the medication intake time relative to performing the finger-tapping activity, respectively.

ContributorsMcCarthy, Alexandra (Author) / Gin, Taylor (Co-author) / Berisha, Visar (Thesis director) / Baumann, Alicia (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05